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Abstract  11 

Decision-makers and stakeholders need rapid assessment of the potential damage following earthquake 12 

events to develop and execute disaster risk reduction strategies and to systematically respond to the 13 

emerging situation in post-disaster situations. Classical risk assessment methods are resource- and time-14 

consuming. In this study, the Mw 7.8 Gorkha, 2015 Nepal Earthquake crowd-sourced building damage 15 

data is used to explore the efficiency of various machine-learning techniques in rapid earthquake-16 

induced building damage assessment. The Random Forest Regressor showed the best performance 17 

among several machine learning methods considered in this study. For rapid seismic damage assessment 18 

in Nepal, for a given earthquake scenario, the building features data collected from the existing built-up 19 

environment can be used as an input to this model and the output will help decision-makers to take 20 

appropriate decisions.  21 
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1. Introduction 27 

Earthquakes are less frequent in occurrences but contribute significantly to physical and social 28 

consequences. On average, since 1990-2017, annually, earthquakes result around USD 34.7 billion 29 

losses globally (OECD, 2018) and USD 5 billion losses in Nepal (UNDRR, 2019). It is crucial for 30 

decision-makers and stakeholders to have rapid assessments of potential damage due to earthquake 31 

events (Bommer & Crowley, 2006). For a successful emergency response planning before and after an 32 

earthquake, the spatial distribution of damage over the built environment is required (Earle et al., 2010; 33 

Ranf et al., 2007). Various classical methods exist for estimating earthquake-induced building damage 34 

based on ground shaking. These methods require a lot of information on building portfolios and 35 

earthquake ground motion. This makes seismic risk assessment at regional/urban scale quite challenging 36 

because the collection of building information and application of damage assessment methods is time 37 

and resource consuming.  38 

For the last decade, the progress in artificial intelligence (AI) tools and their application in various 39 

domains has increased. Yet, there is only a very limited number of applications of AI for rapid seismic 40 

risk assessment. Riedel et al.( 2014, 2018) showed the ability of the Support Vector Machine for seismic 41 

vulnerability assessment at urban or regional scales. Mangalathu et al. ( 2020) showed an application of 42 

the machine learning technique in rapid seismic risk assessment using an earthquake damage data 43 

portfolio of the 2014 South Napa earthquake. They concluded that the use of the rapidly growing 44 

machine learning technique in the field of rapid seismic risk assessment provides a reliable estimate of 45 

the earthquake-induced potential building damage. To assure the use of AI technique in seismic risk 46 
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assessment, investigation on the efficiency and relevancy of AI technique in seismic damage assessment 47 

at regional scale is required. 48 

Moreover, building-damage portfolios of earthquake events are starting to become openly accessible. 49 

For example, the National Planning Commission of Nepal (http://eq2015.npc.gov.np/) shared a massive 50 

household data survey of the damaged buildings after the Mw 7.8 2015 Gorkha Nepal earthquake. The 51 

objective of this paper is to test the effectiveness and relevancy of several AI methods for predicting 52 

spatially distributed seismic damage. This article presents the results on the performance of various 53 

machine learning models in rapid damage earthquake assessment using the Nepal earthquake damage 54 

portfolio.  55 

 56 

2. Description of the Damage Database 57 

On 25 April 2015, a devastating earthquake of Mw 7.8 hit the central Nepal with an epicentral about 58 

80km NW from Kathmandu, hypocentre depth of 8.2 km, and 120 km rupture length towards the east. 59 

Thousands of households were damaged, around 8 million people were affected (8,790 fatalities and 60 

22,300 injuries). The 2015 Nepal earthquake building-damage database consists of 762,106 building 61 

datasets collected in eleven districts of Nepal (Fig. 1). The severity of damage is grouped into five grades 62 

observed by visual inspection. Similarly, the information about each building feature: number of stories, 63 

age of the building, height, plinth area, construction material, ground slope condition, building position 64 

with respect to another building, and roof type were also assigned during visual observation. The 65 

detailed description of these five grades  and building features is available on the same website 66 

(http://eq2015.npc.gov.np/docs/#/faqs/faqs). The geo-localization of buildings was provided in the ward 67 

level, ward is the smaller administrative unit. In addition, the ground motion data is added to the database 68 

from the ShakeMap tool from the United States Geological Survey. In this study, macroseismic 69 

intensities (MSI) map from the ShakeMap is considered as an input ground motion (Fig. 2) and assigned 70 

to all the buildings located in the same ward.  71 

In the database, number of story ranges from 1-9 storey (Fig. 3a), age ranges from 1-200 years (Fig. 3b), 72 

plinth area ranges between 70 to 5000 sq. ft. (Fig. 3c), height ranges between 6-97 ft. (Fig. 3d). The MSI 73 

value ranges from 5.30 to 8.30 (Fig. 3e). Likewise, 82.89 (%) /13.86 (%) / 3.24 (%) of the buildings 74 

were located in, respectively, flat/moderate/steep slope, (Fig. 3g), 28.05 (%) / 66.10 (%) / 7.85 (%) 75 

buildings were associated with heavy / light/ RC roofing-system, respectively (Fig. 3h). Similarly, 79.31 76 

(%) / 16.98 (%) / 3.53 (%) / 0.17 (%) of buildings were stand-alone / one-side-attached / two-side-77 

attached / three-side-attached to another building (Fig. 3i). The distribution of the buildings according 78 

to damage grades (DG) in the database is: 10.34 (%) in DG1, 11.45 (%) in DG2, 17.90 (%) in DG3, 79 

24.12 (%) in DG4, and 36.19 (%) in DG5 (Fig. 3f).  80 
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 81 

Figure 1. Location of 11 districts where the 2015 Nepal earthquake building damage data are 82 

available. It also illustrates the severity of the earthquake effect in each district in terms of the 83 

collapsed buildings. (Source: http://eq2015.npc.gov.np/#/compare). 84 

 85 

Figure 2. Spatial distribution of 2015 Nepal earthquake ground motion intensity. (Source: 86 

https://earthquake.usgs.gov/earthquakes/eventpage/us20002926/shakemap/intensity). 87 

3. Method 88 
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This study assessed the efficiency of Linear Regression (LR), Support Vector Regressor (SVR), 89 

Gradient Boosting Regression (GBR), Random Forest Regression (RFR), Gradient Boosting 90 

Classification (GBC) and Random Forest Classification (GBC) in damage prediction. A brief 91 

description of these methods is provided in the annex. Interested readers are suggested to refer to 92 

Friedman et al. (2001) and scikit-learn machine learning in Python (Pedregosa et al., 2011) for detailed 93 

information on these machine-learning methods. 0.48% of the dataset was observed with missing values. 94 

The missing data points associated with categorical variables (damage grades, ground slope, material, 95 

roof type and position) were removed and the outliers associated with the numerical variables (number 96 

of storeys, age, the height of buildings) were replaced by their respective mean value. The entire dataset 97 

is randomly divided into training and testing subsets. Following the recommendation of Friedman et al. 98 

(2001), 70% of the data is used as a training set and 30% is used as a testing set. The training set is used 99 

to train the machine learning model and the testing set is used to observe the predictive performance of 100 

the machine learning model. For each machine-learning model, the features of buildings (number of 101 

storeys, height, age, plinth area, ground slope condition, position, roof material, construction material), 102 

as well as the intensity of ground motion, are defined as input features and damage grades as response 103 

variables. The performance of each machine learning model is evaluated through the coefficient of 104 

determination (R2 scores) and Root Mean Square Error (RMSE) scores for regression and accuracy 105 

scores for classification problems. Higher the value of R2, accuracy score and lower the RMSE value, 106 

better is the performance of the model.  107 

 108 
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Figure 3. Distribution of different features in the dataset. The y-axis is the frequency and the x-axis in 109 

frame is (a) number of story, (b) age of the building, (c) plinth area of building, (d) height of the building 110 

(e) macroseismcic intensity, (f) damage grade, (g) ground slope condition at building location (h) type 111 

of construction material used in roof, and (i) position of building with respect to another building. In 112 

frame (g) FS/MS/SS represent flat/mild/steep slope, respectively. In frame (h) B/T-HR, B/T-LR, 113 

represent bamboo/timber-heavy-roof, bamboo/timber- light-roof and RCC represents reinforced cement 114 

concrete. In frame (i) A1/A2/A3 and NA represent attached with one/two/three sides and not attached, 115 

respectively. 116 

 117 

4. Results and Discussion 118 

The LR and SVR are observed to have the values of R2 score equal to 0.41 and 0.38 and RMSE score 119 

equal to 1.06 and 1.08, respectively.  The lowest R2 value and the highest RMSE value for LR and SVR 120 

methods prove less suitable for this dataset. They oversimplified the complex non-linear interaction 121 

among the features present in the dataset. Similarly, the GBC and RFC methods are observed to have 122 

an accuracy score of 0.33 and 0.55, respectively. GBC and RFC are also unable to classify the true 123 

damage grade with high accuracy. The highest values of R2 score are 0.58 and 0.56, and the lowest 124 

RMSE values are 0.88 and 0.87 are observed for GBR and RFR, respectively. These methods give 125 

higher efficiency in the damage prediction. GBR and RFR can reproduce the stronger non-linear 126 

interaction that exists among different features present in the dataset.  127 

The performance, effectiveness, and computational time of these methods are very sensitive to the value 128 

of model parameters (hyperparameters). The GBR method requires careful tuning of a greater number 129 

of hyperparameters as compared to RFR. Thus, RFR is observed to be the most efficient method in 130 

building-damage prediction. 131 

Fig. 4 shows the results of the RFR method in the test dataset. Few misclassifications are pointed out 132 

both by considering the frequency of correctly assessed DGs i.e. predicted damage is within one step 133 

from the observed value and the median value of assessed DGs that deviate from the classification 134 

provided in the field surveys. This illustrates the high strength of RFR method in damage prediction, 135 

which is very crucial from the perspective of seismic risk assessment. Thus, using RFR model, the 136 

spatial distribution of seismic damage can be predicted using the basic features of buildings and 137 

building-damage information from the existing post-disaster survey and vulnerability assessment with 138 

a reasonable level of accuracy.  139 

  140 
Figure 4. Graphical representation of the predictive performance of the RFR model on the test dataset. 141 

In frame (a) the x-axis is the predicated damage grade (DG) and the y-axis is the frequency. The red 142 



vertical line represents the median value. The true damage grade is noted in the same subplot. In frame 143 

(b) the x-axis is the predicted DG and the y-axis is the true DG.  144 

 145 

5. Conclusion 146 

The efficiency and relevancy of machine learning techniques in rapid seismic risk assessment is studied 147 

using the 2015 earthquake building damage data from Nepal. Performance of Linear Regression, 148 

Support Vector Regression, Gradient Boosting Regression, Random Forest Regression, Gradient 149 

Boosting Classification, and Random Forest Classification in building-damage prediction using basic 150 

features of building was tested. The Random Forest Regression is observed to be the most efficient in 151 

damage prediction. A reasonable estimate of the damage at a given level of the ground motion is possible 152 

using basic features of building and RFR model, resolving the time and resource consumption issues. 153 

The 2015 Nepal earthquake building-damage portfolio and the RFR model can be used for the  site 154 

specific or global rapid seismic risk assessment in Nepal i.e. using the RFR model trained on the 2015 155 

Nepal earthquake building-damage dataset, we can predict potential damage for a given earthquake 156 

scenario by considering the same input features data collected from the existing built-up environment.  157 

The output of such assessment model may assist stakeholders and decision-makers in rapid seismic risk 158 

assessment in order to formulate and implement new plans and policies in earthquake disaster risk 159 

reduction.  160 

The 2015 Nepal earthquake building-damage dataset can be used as a powerful tool for seismic risk 161 

assessment in Nepal. The building-damage database is associated with significant amount of noise. Fine 162 

refinement of the existing dataset including all available post-disaster building damage data is 163 

recommended. Similarly, the development of national building database collecting key information of 164 

building is necessary to facilitate seismic risk assessment in Nepal.  165 

As a future perspective, further investigation in rapid seismic risk assessment should be carried out by 166 

considering the key building features (number of storeys, plinth area, age, height etc.) that are easily 167 

accessible and could be used as a good proxy to predict building damage using the most suitable machine 168 

learning technique. Investigation of the applicability of the machine learning model with other open-169 

data platforms like OpenStreetMap (OSM) should be investigated for rapid seismic risk assessment. 170 

 171 
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Annex 208 

Linear Regressor 209 

Linear Regression (LR) explains the relationship between target variables through a linear combination 210 

of input (predictors) variables. The functional form of the LR is given below as: 211 

𝑌 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=0 = 𝑤T𝑥 212 

Here, the weight w0 represents the y-axis intercept and wi is the weight coefficient of the input variable, 213 

and Y is the target variable. The LR fits a linear model with coefficients w = (w1, …, wp) to minimize 214 

the residual sum of squares between the observed targets in the dataset, and the targets predicted by the 215 

linear approximation. The LR has simple analytical and computational properties. They provide an 216 

adequate interpretable description of how the input affects the output. This method is computationally 217 

efficient. The weight associated with each input variable helps in features importance identification. The 218 

LR is oversimplified (unable to capture the complexity of the problem), and is very sensitive to outliers. 219 

The LR assume that data are linearly separable, special attention should be paid with multicollinearity 220 

issues, not very efficient to nonlinear data (https://scikit-learn.org/stable/modules/linear_model.html). 221 

Support Vector Regressor 222 

Support vector machines (SVM) is a set of supervised learning methods used for classification, 223 

regression, and outlier detection. In SVM, the input features are transformed into a higher-dimensional 224 

space where two classes can be linearly separated by a high dimensional space called a hyperplane. The 225 

SVM was originally used for classification problems and then extend to regression problems called 226 

Support Vector Regression (SVR).  SVR maintains all features of SVM. The model produced by SVR 227 

depends only on the subsets of the training dataset because the cost function ignores samples whose 228 

prediction is close to their target. Three types of implementation are possible for SVR: SVR, Nu-SVR, 229 

and Linear SVR. SVM is effective in high dimensional spaces, memory efficient, versatility in kernel 230 

functions. This method is more suitable when the number of features in more than the number of data. 231 

SVM is less suitable when the number of data points is so large, they do not provide direct probability 232 

estimate, overfitting could be an issue when the number of features is larger than the of data points 233 

(https://scikit-learn.org/stable/modules/svm.html). 234 

Gradient Boosting 235 

Gradient Boosting (GB) is a generalization of boosting to the arbitrary differentiable loss function. The 236 

GB is based on an ensemble of several decision trees. A decision tree represents a set of conditions or 237 

restrictions that are hierarchically organized and successively applied from a root to a lead of the tree. 238 

The GB is an accurate and effective procedure that can be used for both regression and classification. It 239 

is shown that both the approximation accuracy and execution speed of the GB can be substantially 240 

improved by incorporating randomization into the procedure. Specifically, at each iteration, a subsample 241 

of the training data is drawn at random (without replacement) from the full training data set. This 242 

randomly selected subsample is then used in place of the full sample to the base learner and compute 243 

the model update for the current iteration. This randomized approach also increases robustness against 244 

the overcapacity of the base learner. The GB has lots of flexibility in terms of the loss function. They 245 

can easily handle missing data, often works great with categorical and numerical data. This is sometimes 246 

computationally expensive, requires careful tuning of hyperparameters (model input parameters). 247 

(https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting). 248 

Random Forest  249 

Random Forest (RF) ensemble the performance of several decision trees to classify or predict the value 250 

of variables, which is based on bagging. Decision trees are trained by using a random subset of the 251 
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original features. The RF can model complex relationships in the data and account for non-linear 252 

relationships between predictor and response variables by the adaptive nature of the decision rules. The 253 

RF has better generalization performance, less sensitive to outliers, does not require tuning of many 254 

hyperparameters. It works with continuous and also categorical predictors and also can handle missing 255 

data (https://scikit-learn.org/stable/modules/ensemble.html). 256 
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