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1 Abstract23

To better understand the effect and influence of spatial density of ground motion24

predictions, we attempted to combine data from multiple seismic networks from the same25

region and compare intensity predictions with and without new seismological networks. The26

U-Net neural network architecture is used as a ground motion model that predicts the mean27

and standard deviation of a target intensity measure (IM, PGA) in the form of maps. The28

U-Net can interpolate the intensity measures between the observation points inherently and29

we here try to analyse the effect of spatial density in this interpolation by using multiple30

networks. Kanto basin in Japan is selected for this study due to the availability of dense31

seismic networks within the basin and we integrated the KIK-net and the MeSO-net networks32

within the basin for this study. The results show that the errors and the uncertainty levels33

between the predictions and the observations at the interpolated sites slightly decreased34

after adding an additional network for the training process, but the statistical significance is35

questionable. However, more networks or more observations per station are required to be36

integrated and trained within the same region to analyse and validate our results.37

2 Introduction38

Over the last few decades, a large number of ground-motion models (GMMs) have39

been developed for use in seismic hazard and risk applications all over the world. GMMs40

define the ground motion field in terms of earthquake source characteristics (e.g., magnitude,41

fault mechanism), wave propagation (e.g., epicentral distance), and site effects (e.g., site class42

or V S30) to predict specific intensity measures (IM). For various tectonic regions, tens or43

even hundreds of candidate models are available due to the intricacy of the earthquake44

process, wave propagation, and site effects; examples can be found in Douglas (2020). These45

models represent the distribution of ground-motion in terms median intensity measure and46

its standard deviation (Strasser et al. 2009).47
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The U-Net neural network architecture has been used recently as a ground motion48

model that predicts the mean and standard deviation of a target intensity measure (IM,49

PGA) in the form of maps (Lilienkamp et al. 2022).The U-Net, it learns the relationship50

between predictive parameters and target parameters using a large number of instances51

that are presented to train the neural network, just like all supervised learning techniques.52

In ground-motion modelling, the target parameter is a ground-motion IM, which may be53

deduced from predictive factors such as the moment magnitude Mw and the hypocentral54

distance rhyp. The U-Net neural network architecture has been used recently as a ground55

motion model that predicts the mean and standard deviation of a target intensity measure56

(IM, PGA) in the form of maps (Lilienkamp et al. 2022). The U-Net can interpolate the57

intensity measures between the observation points inherently and we here try to analyze58

the effect of spatial density of observation points in this interpolation by using multiple59

seismological networks (e.g. MeSO-NET).60

To better understand the effect and influence of arrays spatial density on ground mo-61

tion predictions, we attempted to combine data from multiple seismological networks from62

the same region and compare intensity predictions with and without new seismological sta-63

tions.The relative surface fault motion for recording stations situated on either side of a64

causative fault, soil liquefaction, landslides, and the general transmission of the waves from65

the source through the various earth strata to the ground surface can all contribute to the spa-66

tial variability in seismic ground motions (Zerva & Zervas 2002). This architecture’s inherent67

capacity to process data in the form of 2D arrays (maps) makes it particularly appealing for68

ground-motion modeling, as it allows for native operations on map data, which preserves the69

underlying spatial distribution of ground-motion observations (Lilienkamp et al. 2022). This70

visualization method provides a clear picture of how spatial density of observation points71

affects ground motion predictions. This spatial variation of seismic ground motions has72

started being analyzed after the installation of these kinds of dense instrument arrays. The73

sensors used for these arrays are costly and also time-consuming, hence studies are required74
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to really understand the effect of these arrays and to find an optimal array that minimises75

the error in model predictions. In this study, we focus on the effect of spatial density of76

the stations in the intensity predictions and the associated uncertainties by integrating data77

from different seismological networks.78

In this report, we use the U-net architecture to understand the relation between79

the IM (here PGA) and predictive parameters in the Kanto basin using a subset of the80

Kiban–Kyoshin (KiK-net) dataset. We then look at how integrating two datasets from the81

same region (Kanto Basin) - the KiK-net and the highly dense Metropolitan Seismic Observa-82

tion network (MeSO-net), affects the interpolation of IMs and their associated uncertainties83

between the observation points. Here we work with the PGA values while the original work84

of (Lilienkamp et al. 2022) focused and tested only for SA(T=1s).85

3 Data Used86

Kanto basin in Japan is selected for this specific study due to the high-density seis-87

mic networks available within the basin. The basin has KiK- et stations, MeSO-net stations88

(Sakai & Hirata 2009), K-net stations (National Research Institute for Earth Science and89

Disaster Resilience, 2019) and some QuakeSaver devices are also installed within some build-90

ings in the region.91

We are primarily interested in determining and analyzing the difference in the uncer-92

tainty in U-Net’s interpolation of intensity measures between station locations when data93

from numerous networks is used instead of a single network, hence, the goal of our study94

necessitates the use of high-density networks of this type. We focus on two networks in this95

report, i.e, KiK-net and MeSO-net as shown in Figure 1. Both KiK-net and MeSO-net are96

operated by National Research Institute for Earth Science and Disaster Resilience, NIED97

(2019).98
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Figure 1: KiK-net and MeSO-net station coverage in the Kanto Basin. Blue triangles indicate
the MeSO-net locations (highly dense) and the red circles are the KiK-net station locations.

3.1 KiK-net dataset99

KiK-net consists of pairs of strong-motion seismographs installed in a borehole and100

on the ground surface. Here, we used exactly the same dataset given by Bahrampouri et al.101

(2021) comprising both surface and borehole sensors. We downloaded the processed data by102

Bahrampouri et al. (2021). The database utilized in this study comprises all earthquakes103

with a magnitude greater than three that were recorded on the KiK-net website between104

1996 and the end of 2017 and used by Bahrampouri et al. (2021), Lilienkamp et al. (2022).105

We used 46,191 records from 2864 events recorded at 65 different stations. The selected KiK-106

net stations have an average inter-station distance of about 94 km. As our target intensity,107
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we used the geometric mean of the PGA values. The distribution of the dataset is given in108

Figure 2.109

3.2 MeSO-net dataset110

MeSO-net is made up of around 300 observation stations in the Tokyo metropolitan111

region, as illustrated in Figure 1 (blue triangles). These stations are made up of five dense112

linear arrays spaced around 2 to 3 km apart and a sparser distribution with a radius of about113

80 km spaced roughly 4 to 10 km apart. This network is highly dense compared to the inter-114

station distance of KiK-net stations. MeSO-net stations (three-component accelerometer)115

are located at the bottom of 20 m deep boreholes. This data is converted to correspond to116

the intensity at the ground surface according to Aoi et al. (2021) by adding 0.5 to log(PGA)117

at all stations at all stations (accounting for the free surface factor).118

Figure 2: Data from Kanto basin used for this study. Hit counts computed for the data distribution,
dividing the distance range into 20 equally spaced bins over the hypocentral distance and the moment
magnitude (Mw). a) KiK-net dataset b) MeSO-net dataset.

The MeSO-Net waveform data is downloaded from the National Research Institute119

for Earth Science and Disaster Resilience (NIED) website. The website provides the data120

from 2021 and 2022. A total of 1921 recordings are obtained from 19 events recorded at121

300 different stations in the Kanto Basin. Figure 2 depicts the data distribution of both122

networks - the KiK-net and the MeSO-net. Data used from MeSO-net for this study is only123
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available from a limited time period.124

4 Methodology125

4.1 The U-net architecture126

The U-net neural network architecture (Ronneberger et al. 2015) is the central com-127

ponent of our methodology, as it can offer us with a fully non-ergodic and data-driven GMM.128

Lilienkamp et al. (2022) introduced this to the ground motion modelling area, and the paper129

tests the U-net as a GMM and explains how it can work as a GMM. Figure 2 illustrates this.130

The input parameters are the nine maps shown in the figure, i.e, the latitude and longitude131

of the event, the depth, magnitude, the coordinates of each pixel in the input layer (572132

× 572 pixels), the hypocentral distance and the depth to seismic bedrock. The output will133

be the mean, ŷ and variance, σ2 of the IM. The valid convolution operations reduces the134

resolution of the output features is to 388 × 388 compared to that of the input features.135

Through a series of instances and iterations, the U-net algorithm learns the link between the136

input parameters and the output. Detailed information on the neural networks can be found137

in LeCun et al. (2015). The U-net is particularly useful for ground motion modelling since138

it is designed to process data in the form of 2D arrays, or maps. The U-Net’s predictive139

parameters are provided in the form of a stack of maps spanning a predefined area, and the140

U-Net is trained to provide estimates of the target IM’s mean and variance. The negative141

log-likelihood is considered as the model error or the loss between the model outputs and142

the observations for an event with N observations. The loss is iteratively minimized using143

the gradient descent algorithm Adam (Da 2014), with the gradient effectively implemented144

using backpropagation (Rumelhart et al. 1986).145

After one cycle (epoch) of training using all of the training data, the neural network’s146

training is tested using the validation dataset. After a given number of epochs, the loss147

on the validation dataset does not decrease any further, indicating that the training is148

complete and the U-Net may now be used as a GMM. Instead of point-wise observations,149
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Figure 3: This study’s U-Net architecture [Figure from Lilienkamp et al. (2022)]. The U-Net
receives the predictive parameters for a single earthquake as input in the form of a stack of maps.
The input is processed, and the intensity measure (IM) mean ŷ and variance σ̂2 estimators are pro-
vided as output. Late, lone, and dhyp are the latitude, longitude, and depth of the event hypocenter,
respectively. Mw is the moment magnitude, xs and ys are the coordinates of each pixel in the input
layer, rhyp is the hypocentral distance, and zbedrock is the depth to seismic bedrock. This figure
is described in more detail in (Lilienkamp et al. 2022). This figure is based on the first figure of
Ronneberger et al. (2015).

the U-net predictions are continuous maps. This means that the loss function is generated150

first at sites where actual observations are available, and then the U-Net interpolates the151

learned attenuation relation from those locations. The data was separated into training and152

validation events using the same training technique as (Lilienkamp et al. 2022), i.e.,153

• The data were divided into training and validation events.All events occurring up to154

2015 are used for training, while those occurring 2015 and onwards are considered155

validation events.156
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• Stations are divided into a number of chunks at random (Nchu) - for each station chunk,157

one U-net is trained (the selected station chunk is excluded from training in order to158

be used for validation after training).159

• The U-net is run Ninit times to quantify the variability caused by random coefficient160

initialization. The final predictions for the mean and variance of the target IM for the161

event e (Ŷe and the Σ̂e,respectively), are obtained by ensemble averaging the mean and162

variance predictions of the individual U-Nets ( ŷe
ij and the σ̂e

ij,respectively). The total163

number of U-Nets will be, NU = Nchu ∗ Ninit and the mean and variance of the final164

predicted IM according to the law of total expectation and the law of total variance165

(Blitzstein & Hwang 2015) for an event will be166

Ŷe = 1/NU

Nchu∑
i=1

Ninit∑
j=1

ŷe
ij (1)

167

Σ̂2
e = 1/NU

Nchu∑
i=1

Ninit∑
j=1

[σ̂e
ij2 + ŷe

ij2 ] − Ŷ 2
e (2)

The U-Net learns the site amplification as a function of the coordinates of the station168

location, source-location specific variability from the event latitude and longitude, and path-169

specific amplification from the coordinates of each pixel and from the latitude and longitude170

of the events. We initially analyzed the U-net findings using only the KiK-net dataset, then171

trained the U-net using both the KiK-net and MeSO-net datasets to see how the results172

differ in terms of increasing the number of observation sites between the existing ones (the173

KiK-net stations).174

4.2 U-Net training with different seismological networks - Kanto Basin175

We started (the first stage) of the U-Net training with the KiK-net strong-motion176

dataset by (Bahrampouri et al. 2021) for peak ground acceleration (PGA) measurements. All177

events occurring up to 2015 are used for training, while those occurring 2015 and onwards are178
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considered validation events. The 65 stations are separated into 5 chunks, with each chunk179

receiving a random selection of the stations and 10 random initializations. We proceed with180

the inclusion of the MeSO-net dataset after obtaining the predicted PGA values with the181

KiK-net dataset. We use both the KiK-net and MeSO-net recordings for the training in182

this stage. For the training phase, both the events occurring before 2015 (only KiK-net)183

and after 2020 (only MeSO-net events) are evaluated. The validation events are set as the184

same sets we used in the first step in order to understand the changes after adding a new185

dense network (MeSO-net) with the KiK-net data in training process, i.e, the same KIK-net186

station chunks are used for validation of interpolated IM values. A summary of this is shown187

in the flowchart.(Figure 4)188

5 Results and Discussion189

5.1 Interpolation Quality190

We first analyse the effect in the interpolation of IMs when arrays of stations (MeSO-191

net) are integrated to the KiK-net dataset in the same region, Kanto basin. As we have192

discussed earlier the U-net automatically interpolates the learned relation from the obser-193

vation locations across the output area and we study the quality of this interpolation using194

the partial ensemble estimators, Ŷ i, for which the ith station chunk was not used during195

training. Averaging over the subsets of U-Nets that share the same ith station validation196

chunk yields partial ensemble estimators. Lilienkamp et al. (2022) evaluated and classified197

these partial ensemble estimators in four different ways to understand the performance of198

U-Net at the interpolated sites and we use the same technique to assess the effect of spatial199

density in the interpolation. The four different categories are (1) training events recorded200

on training stations, (2) validation events recorded on training stations, (3) training events201

recorded on validation stations, and (4) validation events recorded on validation stations.202

We average the root mean square error (rmse) between the observations and predictions203

(Ln) over the five station chunks Ŷ i. The average of the rmse values using only the KiK-net204
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Figure 4: Flowchart describing the process used in this study.
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stations is given in Table 1. The rmse values are larger when using the validation stations,205

as seen in the table, because these predictions from the validation stations have additional206

errors owing to interpolation. The training events and the training stations will have the207

smallest rmse values as those observations are the ones used for training.208

Table 1: Average Root Mean Square Errors ± 1 Standard Deviation between Observations and
Predictions of the Five Partial Ensemble Estimators using only KiK-net.

Configuration Rmse

Training stations/training events 0.432 ± 0.007

Training stations/Validation events 0.496 ± 0.005

Validation stations/training events 0.871 ± 0.104

Validation stations/validation events 0.854 ± 0.090

Table 2: Average Root Mean Square Errors ± 1 Standard Deviation between Observations and
Predictions of the Five Partial Ensemble Estimators using both KiKnet and MeSO-net.

Configuration Rmse

Training stations/training events 0.429 ± 0.007

Training stations/Validation events 0.494 ± 0.005

Validation stations/training events 0.865 ± 0.086

Validation stations/validation events 0.841 ± 0.080

The rmses in Ln units are then analyzed using both the KiK-net and MeSO-net209

stations to see how integrating more stations affects the results. The validation stations210

rmses with and without the MeSO-net stations are of particular interest because they are the211

predictions with the interpolation error. The average of the rmses between the observations212

and predictions over the five Ŷ i using both the networks is given in Table 2. As shown in213

the table the rmse values decreased in all the four configurations. The change of rmses are214

within the standard deviation provided in the tables for all the four combinations, which215

may provide the idea that the changes are not that significant. Due to the small number of216

MeSO-net records compared to KIK-net records, the influence on training the neural network217

is relatively small. Thus, while the number of records is small, the MeSO-net network is218

actually predestined to improve the quality of interpolated values in this region. We may219
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observe more significant changes in the validation stations on validation events combination220

by using a more temporal dense network, eg.the Kyoshin Network (K-net), (NIED 2019).221

We also try to understand the effect on the uncertainty in prediction when another222

seismological networks are integrated to the training dataset. Lilienkamp et al. (2022) used223

Σ̂ (given in equation 2) as a proxy for the scatter in observations at station locations, as224

it is what we learn with the neural network, and it is supposed to have learned the scatter225

in observations and verified its reliability by comparing the distribution of the standardized226

residuals, ∆̃, with the standard normal distribution. The residuals are standardized by227

dividing each individual residual by its predicted standard deviation, Σ̂. We calculated the228

∆̃ achieved using only the KiK-net data and also together with the MeSO-net dataset for229

training. Once this is achieved we compare it with the target normal distribution to analyse230

the difference in both distributions (Figure 5). We get a similar standard deviation of ∆̃231

in both cases, i.e around 14-15 % decrease than the targeted value. Since, we standardized

Figure 5: Comparison of the distribution of standardized residuals with the targeted standard
normal distribution. Solid and dashed vertical lines indicate the empirical mean and standard
deviation (std) of standardized residual, ∆̃ respectively. a) Training with only KiK-net b) Training
with both KiK-net and MeSO-net dataset.

232

the residuals by dividing it by the Σ̂, this standard deviation of 0.86 corresponds to an233
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overestimation of the uncertainty in predictions.234

We calculate the ∆̂ distribution between all observations from both training and235

validation events with respect to the partial ensemble estimators discussed above. All the236

four combinations are analysed with respect to the standard Gaussian distribution as shown237

in Figure 5 and 6.238

Figure 6: Comparison of the distribution of the standardized residuals with the targeted standard
Gaussian distribution for the partial ensemble estimators in all four configurations using the KiK-
net dataset.

Figure 7: Comparison of the distribution of the standardized residuals with the targeted standard
Gaussian distribution for the partial ensemble estimators in all four configurations using both the
KiK-net and MeSO-net dataset.

The panels (c) and (d) in both figures gives the closest fit to the standard normal239

distribution and hence, we can understand that the predictive uncertainty at the training240
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stations are reliable. But while considering the other two panels of both figures, underes-241

timation of the predictive uncertainty is quite significant - as both are much higher than 1242

(around 40%). However, the overestimation seems to decrease when an additional network243

is integrated to the KiK-net dataset. The standard deviation of the validation stations on244

validation events decreased from 1.39 to 1.35 and the validation stations on training events245

moved closer to 1 when MeSO-net is added to the U-Net training. These results indicate that246

the increase in spatial density may contribute to a slight decrease in the underestimation of247

the predicted standard deviation in the interpolated sites.248

5.2 Site amplification249

We also analysed the effect of a spatially dense seismological network in the site250

amplification learned by the U-net architecture. The site specific effects are calculated by251

training another GMM without using the predictive parameters xS, ys and zbedrock. We252

then approximate the site amplification ˆAmps learned by subtracting the GMM predictions253

with and without the site specific predictive parameters. This will provide us with the site254

amplification maps shown in Figure 7.255

The maps are plotted for the models trained with only KiK-net and also trained with256

both KiK-net and MeSO-net. Both the maps behave very similar to each other and there257

is no significant effect on adding more station data. This may again lead to the fact that258

both spatially and temporally dense networks are required in understanding the detail and259

reliable effects.260

When the map (only using KiK-net) is compared with the amplification maps at SA261

1s (Figure 8), significant deamplification can be observed. This may be because of the use of262

zbedrock as the predictive parameter for site and hence, this may indicate that the sediments263

in the basin are damping high frequencies. More studies are required to understand the264

difference in site amplification in different frequencies.265
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Figure 8: Site amplication estimation of PGA in the Kanto basin approximated from averaged
mean predictions. a) KiK-net b) KiK-net + MeSO-net. The black triangles indicate the station
locations

6 Conclusion and Future work266

The importance of spatial density in predicting ground motion IMs using the method267

developed recently by Lilienkamp et al. (2022) for several applications, including probabilistic268

seismic hazard analysis, has been discussed in this deliverable. We here assesed and discussed269

the difference in the uncertainty of U-Net’s interpolation of IMs between station locations270

when data from multiple networks rather than a single network is used. The operation of271

the U-net architecture is studied, and the U-net is trained using only the KiK-net dataset as272

well as both the KiK-net and MeSO-net databases. The KiK-net stations have an average273

inter-station distance of 94 km and 65 stations are located within our study region, ie the274

Kanto basin. The MeSo-net network is much denser than the KiK-net, with an average275

inter-station distance of 2-3 km and 300 observation stations located entirely within the276

Kanto basin, hence the difference of considering a high dense network in training can be277

understood.278
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Figure 9: Site amplication estimation of PSA at 1s in the Kanto basin approximated from averaged
mean predictions using the KiK-net data. The black triangles indicate the station locations

The U-net is trained using a single network and by integrating two networks within the279

same region while the validation stations remain the same. The partial ensemble predictions280

are analysed to understand the difference of prediction with and without including the MeSO-281

net. The rmse values between the observations and predictions of the partial ensemble282

estimators decreased after considering the dense network for training. The highest decrease283

in the rmse is found on the category of validation stations on validation events, which284

shows the effect of the new integrated network on the interpolation of U-Net, however the285

significance is still questionable as it is within the standard deviation. More dense networks286

are required to understand the significance of the decrease in the rmse values. We then287

compared the standardized residual distribution to analyse the accuracy of the predicted288

standard deviation. If the standard deviation is less than 1, it corresponds to overestimation289

of the uncertainty and vice-versa. Both the results show an overestimation of uncertainty by290
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14-15 %, however when we analysed the partial ensemble estimators the uncertainty range291

seems to decrease slightly and move towards one when both the datasets are used instead292

of only KiK-net. Although we integrated a spatially dense network along with the KiK-293

net dataset to compare the results, more networks with data quantity in both spatial and294

temporal scale is required to analyse and validate our results.295

According to the results provided in this report, the error and the uncertainty tends296

to reduce with the integration of a spatially dense network, however more studies on the297

changes of IMs with spatial density is required. The site amplification in different frequen-298

cies is needed to be analysed and investigated using different seismological networks. The299

availability of the K-net data in the Kanto basin adds an advantage of another network300

availability within the same region. Integration of K-net along with the KiK-net and the301

MeSO-net will definitely improve the clarity of the results given in this report. Also, we have302

analysed the PGA values here, but it will be also more interesting and useful to examine the303

effect of integration of stations in higher periods PSA (T = 1s) because of its probabilistic304

seismic hazard analysis applications.305
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