
 

 

 

 

Project number 813137 

 

URBASIS-EU 

New challenges for Urban Engineering Seismology 

 

DELIVRABLE 

 

Work Package: WP4 

Number: D4.1 – Intensity measure and engineering demand parameter for 

natural and induced seismicity. 

 

 

Authors:    Ghimire, Subash                 (UGA) 

Co-Authors:   Gueguen, Philippe             (UGA) 

                     Schorlemmer Danijel        (GFZ)  

 

Reviewers    Astorga, Ariana       

Approval     Management Board 

Status     Final Version 

Dissemination level    Public 

Delivery deadline   31.10.2020 

Submission date   18.02.2021 

Intranet path   https://urbasis-eu.osug.fr/Scientific-Reports-157  

https://urbasis-eu.osug.fr/Scientific-Reports-157


 

 

 

Abstract 

Performance-based earthquake engineering is a probabilistic decision-making framework aimed to 
mitigate seismic risk, based on a comprehensive scientific foundation. In this framework, the ground 
motion intensity measures (IM) is linked to the threshold damage parameters (EDP) to measure the 
expected damage of the structures. Two natures of IM are defined: (1) an efficient IM defined as 
providing the smallest variability in EDP given IM relation, and (2) sufficient IM defined as providing 
EDP conditionally independent on earthquake magnitude and distance. Most of the studies use 
numerical methods to model the building response for given IM. Experimental data from the full-scale 
observations are much more representative of the complex physical process than even the most 
sophisticated laboratory or numerical experiments. Integrating these data into our modes helps to 
identify the sources of epistemic uncertainty. The objective of this study is to use experimental data 
collected from the buildings to explore the sources of epistemic uncertainties in EDP given IM 
relationship (i.e. σEDP|IM) and to test the IM efficiency and sufficiency. For this, we developed a 
database by collecting real strong motion values recorded at the top and at the bottom floors of the 
buildings from the US, Japan, and Romania.  The database contains 8,520 strong motion recordings 
that correspond to 118 buildings and 2,737 events. Several ordinary and spectral IMs are considered 
as ground motion IM and the normalized relative roof displacement of the building is considered as 
EDP. The relationship between EDP given IM is analyzed in order to identify the associated sources of 
uncertainties (i.e. σEDP|IM). Region-to-region, building-to-building, and within-building uncertainties 
associated with earthquake magnitude-distance and aging is explored. The efficiency and sufficiency 
of each IM from a large set of building and earthquake motion data are tested for different criteria 
characterizing the seismic source (magnitude and source-to-site distance) and considering several 
building classes, and a specific single-building analysis including aging due to cumulative earthquake 
damage over time. Empirical building damage prediction equation is developed by utilizing the 
available experimental data and considering the most efficient IMs. 
 

 



 

 

1.  Introduction 

The performance-based earthquake engineering (PBEE) framework is developed by the Pacific 

Earthquake Engineering Research to assist decision-makers in seismic risk decision making. PBEE is 

based on a comprehensive response analysis of an individual component in a probabilistic framework 

(Porter, 2003). PBEE framework is divided into four stages: hazard analysis, structural response 

analysis, damage analysis, and consequences analysis. In hazard analysis, the ground shaking potential 

is defined in terms of ground motion intensity measures (IM) and their annual frequency of exceedance 

(λIM) through probabilistic seismic hazard assessment. In structural analysis, the response of the 

structure to a given IM is expressed in terms of engineering demand parameters (EDPs), such as 

structural drift, maximal top acceleration, etc. In damage analysis, damage measurement (DM) is 

calculated based on threshold of EDP values and models of structure capacity or fragility. Finally, the 

earthquake’s consequence is measured in terms of repair costs, the operability of the structure, and 

potential economic or human losses for a given DM. The consequences can be expressed as decision 

variables (DVs) on which decision-makers can base their decisions in view of the expected performance 

levels. The four steps of the underlying probabilistic framework of PBEE estimate the frequency of 

failure of a performance level over a given period of time; this involves uncertainties. For example, the 

annual frequency of exceeding a given EDP value (λEDP) is expressed by: 

𝜆𝐸𝐷𝑃 = ∫ 𝑃[𝐸𝐷𝑃/𝐼𝑀 = 𝑖𝑚]|𝑑𝜆𝑖𝑚
 

𝑖𝑚
 (1) 

where P(EDP|IM=im) is the conditional probability of occurrence of each EDP value, taking into 

account the value of the IM, and dλim is the annual rate of exceeding an IM value, derived from the 

hazard curves. P(EDP|IM=im) is usually obtained by considering a series of nonlinear dynamic analyses 

of the structure.  

Baker and Cornell (2008) provide a detailed description of approaches to characterize and propagate 

uncertainties at each step. Current research on PBEE is mainly focused on identifying the origins of 

uncertainties, distinguishing between epistemic and random uncertainties, in order to boost scientific 

efforts on the reducible elements that contribute most to the performance uncertainty (Iervolino, 2017).  

In practice, P(EDP|IM=im) satisfies a chosen model of EDP distribution for a given IM and is obtained 

by regression of EDP values for IM values. Baker and Cornell (2008b), Luco (2002), and Luco & 

Cornell (2007) defined two natures of IM: efficient and sufficient. IM that results in the smallest degree 

of variability around the regression of EDP on the IM values is defined as an efficient IM. Similarly, 

IM that results EDP values conditionally independent on earthquake magnitude and epicentral distance 

is defined as sufficient IM. Structure response and the associated uncertainties are conditioned by time-

history seismic excitation, considering the IM at which the EDP value is exceeded. Several authors 

investigated the efficiency and sufficiency of IM (e.g. Baker & Cornell, 2008b; Bianchini et al., 2009; 

Buratti, 2012; Eads et al., 2015; Ebrahimian et al., 2015; Jayaram et al., 2011; Luco, 2002; Luco et al., 

2005; Luco & Cornell, 2007; Mollaioli et al., 2011; Vamvatsikos & Cornell, 2005). All these studies 

are based on the numerical modeling of structures considering different ground motion datasets, mostly 

using the Incremental Dynamic Analysis approach (IDA). Structural analysis through numerical 

approach involves the selection or generation of natural or synthetic accelerograms from different 

tectonic areas, the scaling applied to obtain the desired structural response values, the selection of 

physical modal parameters (e.g., structural period and damping) and their co-seismic variations, as well 

as other modeling assumptions related to component fragility functions, affect the overall uncertainty 

of the performance estimate. Furthermore, a typical assumption in the assessment of P(EDP|IM) is that 

the building response variability for a class of buildings is the same as the response variability for a 

given building in this class (this assumption is an ergodic assumption affecting fragility curves). 

According to several authors (e.g. Guéguen et al., 2016, Trifunac et al., 2010), studies carried out by 

considering the data from full-scale observations in real buildings are much more representative of the 

complex structural response than even the most sophisticated laboratory or numerical experiments; one 

way of improving engineering science to understand the physical behavior of structures is to use a 

complete database of earthquake recordings in real structures. For example, Perrault and Guéguen 

(2015) analyzed the variability of EDP versus IM using accelerometric data recorded in Californian 

buildings, taking structural drift as the EDP, and developed building damage prediction equation 

(BDPE) with its associated uncertainties. Astorga et al. (2018, 2019, 2020) completed the analysis, 

confirming the added value of physical data in understanding the 



 

 

seismic response of Japanese buildings in terms of co-seismic demand parameters related to modal (i.e. 

resonance frequency) parameter variations, especially during repetitive earthquake sequences.  

In this study, the efficiency and sufficiency of several IMs for P(EDP|IM) from a large number of 

experimental datasets are analyzed by using the regression model of EDP values for IM values. In the 

second section, a database developed by collecting earthquake and building response parameters is 

described.  The third section describes the method used to explore the uncertainty in EDP|IM relation. 

Then, the results in terms of efficiency and sufficiency are discussed in the fourth section, completed 

in the fifth by a specific analysis on the variation of the co-seismic frequency value versus EDP. Finally, 

the conclusion develops a simple empirical BDPE using available experimental data and the most 

efficient IMs. 

 

2. Description of the database 

A database is developed by collecting accelerometric data recorded in buildings from the strong motion 

networks from the US, Japan, and Romania. For each earthquake, information such as magnitude and 

epicentral distance is available but there is no description of the source parameters. Similarly, for each 

building, information such as geographic location, height, material, number of floors, etc. are available. 

From the accelerometric recordings ground motion intensity measures and building response 

parameters are computed for each earthquake. Ground motion IMs and the buildings response 

parameters were computed along the two direction of the buildings. The detail description of the 

database is available in Astorga et al (2020). Below sections present the information that are included 

in the database: 

 

2.1 Building and earthquake characteristics  

For each building the name of the strong motion network monitoring the building, building’s 

identification, geographic location, height, number of floors, and the soil properties at building location 

are collected (Tab. 1). Similarly, the event identification, geographic location, magnitude, and 

epicentral distance are also collected for each earthquake (Tab. 2). 

 

Table 1. Building’s information included in the database. 

ID Description Units 

Network ID Strong motion network operator.  

Building ID Building identification code, subscript x and y represents the 

two orthogonal direction. 

 

B-Latitude Geographic latitude of the building. degree 

B-Longitude Geographic longitude of the building. degree 

Vs30 Average shear wave velocity of the site at a depth of between 

0 and 30 meters. 

m/s 

Height Distance between the top and bottom sensors. cm 

Floors Total numbers of floors in the building.  

Materials Structural material used in the building.  

 

Table 2. Earthquake’s information included in the database. 

Event ID Name of the record containing the building and earthquake 

information. 

 

E-latitude Latitude of the epicenter. degree 

E-longitude Longitude of the epicenter. degree 

Magnitude Magnitude of the earthquake. Mw or MJMA 

Epicentral distance Distance of the epicenter from the building. km 

 

 

2.2 Building response parameters 

Six building response parameters are computed using the accelerometric data recorded at the top floor 

of each building. These parameters are: pre- and co-seismic fundamental frequency, peak top 

acceleration (PTA), velocity (PTV), displacement (PTD), and the drift ratio (Tab. 3).  



 

 

 

Table 3. Building response parameters included in the database. 

ID Description Units 

fi Elastic frequency, i.e. pre-seismic fundamental frequency.  Hz 

fmin Minimum value of the fundamental frequency during the earthquake, 

co-seismic fundamental frequency. 

Hz 

PTA Peak acceleration recorded at the building’s top floor sensors. cm/s2 

PTV Peak velocity computed at the building’s top floor sensors. cm/s 

PTD Peak displacement computed at the building’s top floor sensors. cm 

Drift ratio Maximum relative displacement between the top and bottom sensors 

normalized by the height of the building.  

cm/cm 

 

The fi corresponds to the elastic fundamental frequency, computed by the Fourier transform of the zero-

padded (16,384samples) prevent noise window. Similarly, the fmin corresponds to the co-seismic 

minimum value of the fundamental frequency computed from the time-frequency distribution of each 

record. Astorga et al. (2018) explained the detail procedure to compute fi and fmin. The co-seismic time-

frequency variation is associated to structural health and nonlinear processes involved in the building 

during loading (e.g. Todorovska & Trifunac, 2007; Astorga et al. 2018, 2019).  

 

2.3 Ground motion intensity measures 

Ground motion IMs values are computed from the accelerometric data recorded at the bottom floor of 

each building. Six ordinary intensity measures are considered, these ground motion IMs are: Peak 

ground acceleration (PGA), velocity (PGV), and displacement (PGD), arias intensity (AI), destructive 

potential (DP), and cumulative absolute velocity (CAV) (Tab.4). The PGA, PGV, and PGD 

corresponding to the absolute values of maximum acceleration, velocity, and displacement time 

histories, respectively. Arias intensity (Arias, 1970) includes both the amplitude and duration of seismic 

shaking, computed as follows: 

𝐴𝐼 =
𝜋

2𝑔
∫ 𝑎2(𝑡)𝑑𝑡

𝑡𝑓

0
  (2) 

where g is the acceleration due to gravity, a(t) is the acceleration recorded at time t, and tf is the total 

duration of the recording. Cumulative absolute velocity (EPRI, 1988) is computed as follows: 

𝐶𝐴𝑉 = ∫ |𝑎(𝑡)|𝑑𝑡
𝑡𝑓

0
  (3) 

where |a(t)| is the absolute value of acceleration at time t. Finally, destructive potential (Araya & 

Saragoni, 1984) is a modification of AI, taking into account the frequency content of the ground motion. 

DP is defined as follows:  

𝐷𝑃 =
𝐴𝐼

𝑣0
2  (4) 

where  𝑣0
2 is the number of zero crossings per time unit. 

 

Similarly, six spectral IM values are considered, these spectral intensity measures are: spectral 

acceleration (5% damping) (SA1 and SA2), velocity (SV1 and SV2), and displacement (SD1 and SD2) 

for two specific frequency values (1 and 2) impacting seismic demand (Tab. 4). Index 1 corresponds to 

the spectral value computed at the elastic frequency of the system fi and index 2 corresponds to the 

minimal co-seismic value of the resonance frequency fmin.  

In addition, three mean spectral values are computed between fmin and fi (Avg_Sa, Avg_Sv, and 

Avg_Sd) (Tab. 4). These average response spectral values take into account the frequency shift that 

occurs during the seismic loading, and co-seismic non-linear response of the building (Perrault and 

Guéguen, 2015).  

 

Table 4. Ground motion intensity measures included in the database. 

ID Description Units 

PGA Peak ground acceleration recorded by the bottom sensor of the building. cm/s2 



 

 

PGV Peak ground velocity computed at the bottom sensor of the building. cm/s 

PGD Peak ground displacement computed at the bottom sensor of the 

building. 

cm 

AI Arias intensity. cm/s 

DP Destructive potential. cm*s 

CAV Cumulative absolute velocity. cm/s 

SA1 Pseudo-spectral acceleration for the spectral frequency of fi (5% 

damping). 

cm/s2 

SV1 Pseudo-spectral velocity for the spectral frequency of fi (5% damping). cm/s 

SD1 Pseudo-spectral displacement for the spectral frequency of fi (5% 

damping). 

cm 

SA2 Pseudo-spectral acceleration for the spectral frequency of fmin (5% 

damping). 

cm/s2 

SV2 Pseudo-spectral velocity for the spectral frequency of fmin (5% damping). cm/s 

SD2 Pseudo-spectral displacement for the spectral frequency of fmin (5% 

damping). 

cm 

Avg-Sa Mean pseudo-spectral acceleration between fi and fmin (5% damping). cm/s2 

Avg-Sv Mean pseudo-spectral velocity between fi and fmin (5% damping). cm/s 

Avg-Sd Mean spectral displacement between fi and fmin (5% damping). cm 

  

2.4 Strong motion duration parameters 

Sixteen strong motion duration parameters are computed from the accelerometric time-histories data 

recorded at the bottom floor of each building (Tab. 5).  Strong motion duration parameters were 

computed along the two different directions of the buildings. The strong motion duration considered 

are:  

- Bracketed duration, DB (Fig. 1a): the total time between the first and the last exceedance of a 

specific acceleration threshold (i.e. a0). Four acceleration thresholds are defined: 0.05g (i.e. 

DB1), 0.1g (i.e. DB2), 0.15g (DB3), and 0.20g (DB4). 

- Effective duration, DE (Fig. 1b): defined by DE = tf - t0, where t0 corresponds to the time at 

which 0.01m/s of cumulative energy is reached in the Husid diagram (i.e. energy build-up plot, 

AI) and tf corresponds to the time at which AI=0.125 m/s 

- Uniform duration, DU: the sum of the time intervals during which acceleration exceeds a 

specific acceleration threshold. Four acceleration thresholds are considered: 0.05g (i.e. DU1), 

0.1g (i.e. DU2), 0.15g (i.e. DU3), and 0.20g (i.e. DU4). 

- Significant duration, DS (Fig. 1b): defined as the time interval over which a specific percentage 

of total energy is accumulated on the Husid diagram. Intervals corresponding to (5-75)% and 

(5-95)% of total energy computed from acceleration are considered, indicated as DSa1 and DSa2, 

respectively. Similarly, durations based on cumulative energy computed from velocity (i.e. DSv1 

and DSv2) and displacement signals (i.e. DSd1 and DSd2) are also computed, as suggested by 

Trifunac and Brady (1975). 

- Zhou and Xie (1984) duration, DZX, defined as: 

DZX=√
∫ (𝑡−𝑡𝑐)2𝑎2(𝑡)𝑑𝑡

𝑡𝑟
0

∫ 𝑎2(𝑡)𝑑𝑡
𝑡𝑟

0

2

  ; tc=
∫ 𝑡.𝑎2(𝑡)𝑑𝑡

𝑡𝑟
0

∫ 𝑎2(𝑡)𝑑𝑡
𝑡𝑟

0

  (5) 

where tc is the center of gravity of a2(t) along the time axis, a(t) is the acceleration at a given time t, and 

tr is the total duration of ground motion. 



 

 

 
Figure 1. Schematic view of several duration definitions given for two different acceleration time 

histories. (a) Bracketed duration. The horizontal dashed line corresponds to the threshold level of 

acceleration. (b) Significant strong motion duration computed for (5-75) % and (5-95) % of total energy 

based on the Husid diagram. 

 

Table 5. Strong motion duration parameters included in the database. 

ID Description Units 

DE Time interval between 0.01m/s and AI=0.125 m/s using the Husid diagram.  s 

DB (1,2,3 or 4) Total time between the first and the last exceedance of the acceleration 

threshold, i.e. 0.05g (DB1), 0.10g (DB2), 0.15g (DB3) and 0.20g (DB4). 

s 

DU (1,2,3 or 4) Sum of the time intervals during which acceleration exceeds the 

acceleration threshold, i.e. 0.05g (DU1), 0.10g (DU2), 0.15g (DU3) and 

0.20g (DU4). 

s 

DSa (1or 2) Duration corresponding to (5-75) % (i.e. DSa1) and (5-95) % (i.e. DSa2) 

of total energy associated with ground motion acceleration. 

s 

DSv (1or 2) Duration corresponding to (5-75) % (i.e. DSv1) and (5-95) % (i.e. DSv2) of 

total energy associated with ground motion velocity. 

s 

DSd (1or 2) Duration corresponding to (5-75) % (i.e. DSd1) and (5-95) % (i.e. DSd2) of 

total energy associated with ground motion displacement. 

s 

DZX Zhou and Xie (1984) duration. s 

 

2.5 Building earthquake early warning parameters 

Earthquake early-warning system is designed to disseminate the information about earthquake once 

detected by the earthquake early warning system. The building earthquake early-warning parameters 

facilitates to predict the potential building response during the earthquake. We compute three building 

earthquake-early waring parameters by using the accelerometric time-histories recorded at the top and 

bottom floor of the building along two direction of the building. These building early parameters are: 

peak value of the displacement, integral of the square of the velocity, and the displacement (Tab. 6).  

They are computed in the first three seconds of the p-wave window.  

 

𝑃𝑑 = 𝑚𝑎𝑥
𝑡𝑝≤𝑡≤𝑡𝑝+𝜏

|𝑑(𝑡)|  (6) 

 

𝐼𝑉2 = ∫ 𝑣2(𝑡) 𝑑𝑡
𝑡𝑝+𝜏

𝑡𝑝
  (7) 

 

𝐼𝐷2 = ∫ 𝑑2(𝑡) 𝑑𝑡
𝑡𝑝+𝜏

𝑡𝑝
  (8) 



 

 

where tp is the first arrival time, τ is the window length and d(t) is the displacement and v(t) is the 

velocity. 

 

Table 6. Building earthquake early warning parameters included in the database. 

ID Description Units 

Pd Peak of the displacement cm 

IV2 Integral of the squared of the velocity cm2/s 

ID2 Integral of the squared of the displacement  cm2
.s 

 

2.6 Dataset 

Fig. 2 (a) shows the geo-localization of the buildings and the earthquakes and (b) distribution of 

earthquake magnitude and epicentral distance, and (c) distribution of peak of ground acceleration 

available in the database. The description of the datasets present in our database is given below: 

US data - Data from 84 US buildings provided by Center for Engineering Strong Motion Data (CESMD) 

(https://strongmotioncenter.org/) were considered. The distribution of the buildings according to 

construction material is as follows: 27% reinforced concrete (US-RC), 57% steel (US-ST), 11% 

masonry (US-MA), and 5% wood (US-WO). 684 accelerometric recordings were collected; among 

them, 225/302/134/24 recordings were collected from concrete/steel/masonry/wooden buildings, 

respectively. Moment magnitude (Mw) varies from 3.5 to 7.3 and epicentral distance varies from 2.6 to 

331 km (Fig. 2b). The dataset includes strong earthquakes, such as the 7.2 Mw Landers event in 1992 

and the 7.3 Mw Baja California event in 2010. Two subsets of Californian data are considered to assess 

uncertainties related to the tectonic context. These subsets are named specific tectonic source STS1 and 

STS2. The latitude and longitude boundaries of STS1 and STS2 are 33 to 35 and 35 to 39 degrees; 116 

to 120 and 120 to 123 degrees, respectively (Fig. 2a). 

RO data - A ten-story reinforced concrete building monitored by the National Center for Seismic Risk 

Reduction (NCSRR) of Romania is considered. This building has been monitored since December 

2013. 108 accelerometric records were collected, most of them corresponding to earthquakes located in 

the Vrancea seismic zone to the north of Bucharest (Fig. 2a). Epicentral distance thus varies slightly, 

between 127 and 178.3 km for Mw ranging from 3.8 to 5.6 (Fig. 2b). The largest earthquakes Mw 5.6 

and 5.4 in 2016 and 2014, respectively, are included.  

JPN data – 11,763 accelerometric recordings from 32 high/mid-rise Japanese buildings were collected 

from the BRI strong motion network (https://smo.kenken.go.jp/) (Fig. 2a). The building distribution 

according to elementary typology is as follows: 24% steel (JPN-ST), 40% reinforced concrete (JPN-

RC), and 36% steel-reinforced concrete (JPN-SRC). The main shock and aftershock sequences of the 

strongest earthquake, 2011 Tohuku, are included. Magnitude varies from 2.6 to 9.1 (JMA magnitude) 

and epicentral distance varies from 2.2 to 2,394 km (Fig. 2b).  

https://strongmotioncenter.org/
https://smo.kenken.go.jp/


 

 

 
Figure 2. View of the whole dataset used in this study. (a) Positions of epicenters (gray circles) and 

buildings (red squares) in the US (California), Romania and Japan. For the US dataset, the two red 

rectangular boxes define the area of the two specific regions discussed in the manuscript. (b) Magnitude 

versus epicentral distance distribution of the whole dataset including Japan (open circles), the US (gray 

squares) and Romania (solid diamonds). (c) Distribution of natural log(PGA) for American, Japanese 

and Romanian datasets, respectively. σ is the standard deviation of the distribution. 

 

ANX – One of the Japanese buildings, ANX, is a building that has been studied extensively by the BRI 

strong motion network. A detailed description of ANX is available in Astorga et al. (2018). ANX is an 

8-story, steel-reinforced concrete building located approximately 60km northwest of Tokyo, in Tsukuba 

(Japan) (Fig. 3a).  ANX has one basement floor resting on spread foundations (8.2 m deep) lying on 

soft soil made up of alternating layers of clay and sandy-clay to a depth of 40 m. A description of the 

instrumentation is provided by Kashima (2004, 2014). The ANX dataset is the largest of our datasets, 

comprising 1,630 recordings in both horizontal directions, made over a period of 20 years, starting 

immediately after building completion in March 1998 and including the main shock and aftershocks of 

the 2011 Tohuku earthquake. Magnitude varies from 2.6 to 9.1 and epicentral distance varies from 2.2 

to 1,730 km. (Fig. 3b). Furthermore, three data subsets are defined using ANX dataset based on the 

distribution of magnitude-distance criteria is considered to have an adequate number of data in each 

dataset (Fig. 3b): MR1 corresponding to 166 entries with R = 20 ± 50% and M= 3.5 ± 0.5; MR2 

corresponding to 575 entries with R =120 ± 60% and M= 4.5 ± 0.5 and MR3 corresponding to 274 

entries with R = 250 ± 70% and M= 5.5 ± 0.5). The distribution of peak ground acceleration for 

MR1/MR2/MR3 is shown in Fig. 3(c). Astorga et al. ( 2018, 2019) analyzed the time variation of the 

resonance frequency of the ANX building since 1998. They defined four time periods corresponding to 

changes in its behavior. During the first period (T1), the fundamental frequency starts to decrease 

immediately after the completion of construction work, from 1998 to 2005. Frequency stabilizes during 

period T2 (2006-2011/02/30) until the Tohoku earthquake sequence in 2011. During period T3, the 

fundamental frequency drops significantly and a slow recovery of the resonance frequency is observed 

directly after the Tohoku earthquake during the immediate aftershock sequence between 2011/03/01 

and 2011/09/30. Finally, T4 corresponds to the period between 2011/10/01 and 2018/05/15.  

T1/T2/T3/T4 comprise a total of 366/313/402/468 data, respectively. Four further subsets of data within 

the magnitude distance criteria MR2 are considered according to 



 

 

the period criteria: T1-MR2 (118 data), T2-MR2 (119 data), T3-MR2 (193 data), and T4-MR2 (121 

data). 

 
Figure 3. Dataset for the specific Annex (ANX) building in Japan. (a) Location of the ANX building 

(red square) and related earthquake epicenters (gray circles). The black square represents the specific 

subset of data considered. (b) Magnitude versus epicentral distance distribution. The red rectangles 

define the boundaries of the three magnitude-distance criteria (MR1, MR2 and MR3) described herein. 

(c) Distribution of log(PGA) for specific magnitude-distance criteria MR1, MR2 and MR3. σ is the 

standard deviation of the distribution. 

 

3. Method 

In this study, to explore the building response prediction uncertainties and efficiency and sufficiency of 

IM the drift ratio is considered as EDP and PGA, PGV, PGD, AI, DP, CAV, SA1, SA2, SV1, SV2, 

SD1, and SD2 are considered as IMs. IMs and EDP values corresponding to the longitudinal direction 

of the building is analyzed. One parameter log-log regression model (Eq. 9) of EDP on IM proposed by 

Luco (2002) is used to analyze the variation of variability. The degree of scattering around the fitted 

model represents the uncertainty of the EDP|IM model i.e. σEDP|IM.  

𝑙𝑜𝑔(𝐸𝐷𝑃) = 𝑎 + 𝑏. 𝑙𝑜𝑔(𝐼𝑀) + 𝜀  (9) 

where a and b are the estimated regression coefficients and ε is the standard error.  

The variability associated with IMs and EDP is represented hereafter as σIM, and σEDP, respectively, i.e. 

the standard deviation of the log of IM and EDP values, normalized by their mean value.  

The efficiency and sufficiency of IMs is also tested. The efficiency of IMs is defined simply as the IM 

that results in a small variability of EDP given IM value i.e. σEDP|IM. The sufficiency of IMs is defined 

as the IM that makes EDP conditionally independent on earthquake parameters such as magnitude (M) 

and source-to-site distance (R). Sufficiency is tested by computing the linear regression between EDP 

and IM regression residuals ((ε|IM) of Eq.9 and the corresponding 



 

 

value of M or log(R) (Luco & Cornell, 2007). The statistical significance of the coefficient obtained 

from the standard linear regression for M and log(R) is assessed based on the p-value (i.e. the probability 

of obtaining an estimated value of the coefficient at least as large as the actual value, the actual value 

of the coefficient being zero) (Benjamin & Cornell, 1970).  If the p-value observed is greater than or 

equal to 0.05, the estimated coefficient of M or log(R) is statistically insignificant and the IM is 

considered sufficient (Luco & Cornell, 2007). 

Fig. 4 shows the distribution of residual values EDP|PGA for the whole dataset, versus M or log(R). As 

expected, σEDP|PGA varies significantly, reflecting several sources of uncertainties, which will be 

explored in the following section. 

 
Figure 4. Distribution of residual values (EDP|PGA) as function of (a) M and (b) log(R), considering 

the whole dataset. The lines represent the fitted linear model between log(R)/M and the residuals. 

 

4. Result on building response prediction uncertainties 

4.1 General trends - σ 

Fig. 5 shows the standard deviation of the residuals of the fitted standard log-linear regression model 

between EDP and IM (Eq.6) for ALL (JPN+US+RO) datasets. For each IM parameter, σIM is given in 

Fig. 5b. All the σEDP, σIM, and σEDP|IM values are provided in Appendix A1.  

The first observation is that the JPN dataset (σEDP=1.44), largest in terms of numbers, is predominant in 

our global dataset (1.48) compared with the US dataset (1.32). σEDP|IM variability (Fig. 5a) oscillates 

between 0.8 and 1.1, with the highest values corresponding to the spectral and ordinary acceleration 

values and DP intensity measures. However, for AI and DP, it is important to note that σEDP|IM remains 

similar to the other values, while the associated IM σIM varies considerably. This indicates that these 

parameters are not good indicators of the natural variability of ground motion and do not enable a high 

degree of certainty for predicting the response of structures. The most efficient IMs are in velocity (i.e. 

PGV, SV1, and SV2), with σEDP|IM corresponding to 0.80, 0.79 and 0.79, respectively. The efficiency 

of these velocity IMs has already been reported for US data by Perrault and Guéguen (2015) and is 

confirmed herein, regardless of the dataset considered.  

In order to capture the origins of the uncertainties in building response prediction, several relationships 

are tested in the following sections, according to tectonic region, building typology, and ageing effect. 

The paucity of the data for specific analysis in some datasets makes it necessary to separate the studies; 

sub-datasets are therefore presented.  



 

 

 

Figure 5. (a) σEDP|IM values for the IMs concerned, computed for the whole dataset. (b) σIM values. 

 

4.2 Variability associated with the tectonic context - σR 

In this study, the effect of tectonic region on building response is explored using the STS1 and STS2 

dataset (Fig.2) considering all building typologies from the US dataset. Note that for STS1 and STS2, 

the σEDP values are the same (1.24 and 1.20 respectively, Appendix A1), and σIM differs only marginally. 

In Fig. 6, the effect of considering the data by specific region barely minimizes the σEDP|IM values, for 

the same values of σIM (Fig. 6b). The figure shows that for velocity IMs (i.e. PGV, SV1 and SV2), the 

σEDP|IM values are similar, being around 1 for ALL, STS1 and STS2 (values in Appendix A1).  On the 

other hand, the σEDP|IM values for STS1 and STS2, respectively, correspond to 1.15 and 0.97 for SA1, 

1.15 and 1.04 for SA2, 1.03 and 1.10 for SD1 and 1.03 and 1.10 for SD2. Thus, a trend inversion (the 

smallest values for STS2 or STS1) is observed depending on whether acceleration or displacement IM 

values are considered. Although the origin of this inversion has not been confirmed, the class of the 

buildings concerned in these two geographical areas is likely to be the cause, since some buildings are 

more sensitive to acceleration than others, depending on their period of resonance (i.e. stiff or flexible 

buildings). The following sections will therefore focus mainly on velocity IMs, testing the variability 

observed in relation to the class of structure in particular, and assuming an insignificant effect of the 

tectonic context. 



 

 

   
Figure 6. (a) Values of σEDP|IM for the IMs concerned computed for US buildings by tectonic region 

(US STS1 and US STS2) and for all US buildings (US ALL). (b) σIM values associated with each IM. 

 

4.3 Epistemic uncertainties related to building typology - σT 

In this section, the variability associated with different classes of buildings is explored using the US 

and JPN datasets considering the description of the buildings in terms of material. Fig. 7(a) shows the 

variability observed for different classes of buildings in the US dataset. The trends are the same as those 

observed previously between the velocity IMs and the other IMs. Two typologies stand out: MA and 

WO. For these two typologies, the small amount of data in our dataset does not allow a more detailed 

analysis nor a definitive conclusion as to the effectiveness of certain IMs for EDP prediction. For the 

US classes (Fig. 7a), the type of structure only has a slight influence on the σEDP|IM values for the velocity 

IMs (i.e. 0.94 and 0.93 for PGV, 1.01 and 1.02 for SV1, and 0.99 and 0.98 for SV2 for RC and ST, 

respectively, Appendix A1). On the other hand, a notable difference exists between US ST and US RC 

buildings in particular, the latter having a lower σEDP|IM value for displacement IMs (i.e. 0.94 and 0.91 

for PGD, 0.91 and 0.99 for SD1 for RC and ST buildings, respectively).  

Significant differences between the JPN data (Fig. 7b) and the US data are observed. First of all, the 

velocity IMs give different σEDP|IM values for different classes of buildings (e.g. 0.86 and 0.76 for PGV, 

0.86 and 0.70 for SV1 and 0.82 and 0.50 for SV2 for JPN RC and JPN ST buildings, respectively). Fig. 

7c compares the σEDP|IM values for one specific single building (ANX building) with those of its building 

class conforming the epistemic uncertainties. There is a significant contribution to the specific single 

building σEDP|IM values, with significantly reduced σEDP|IM values (e.g., 0.64 to 0.50 for PGV, 0.61 to 

0.48 for SV1, and 0.60 to 0.40 for SV2).  



 

 

 
Figure 7. Variability of σEDP|IM values as a function of the class of buildings (a) US dataset, (b) JPN 

dataset, (c) ANX single building dataset. 

 

4.4 Within-building variability associated with earthquake magnitude-distance - σMR 

Fig. 8a shows the effect of M/R pairs on the variability of the ANX building response. The M/R criteria 

are described in Fig. 3. For MR1 and MR2, the σEDP|IM values are lower than the values of the ANX 

dataset, particularly for the velocity IMs (values for PGV/SV1/SV2 are 0.50/0.48/0.40 for all ANX data 

compared with 0.42/0.40/0.34 for MR1 and 0.41/0.41/0.37 for MR2) and for the displacement IMs 

(values for PGD/SD1/SD2 are 0.46/0.48/0.39 for all ANX data compared with 0.38/0.37/0.33 for MR1 

and 0.35/0.42/0.29 for MR2). Thus, by taking into account the magnitude and distance the σEDP|IM values 

changed significantly, regardless of the IMs considered.  

Similarly, IM sufficiency is tested by considering the JPN building class dataset. For the JPN building 

class, Fig. 8b shows the p-value considering all the IM parameters, summarized in Tab. 7. Based on 

Fig. 8b, it appears difficult to conclude on the sufficiency of the IMs tested on our dataset, i.e. EDP is 

not conditionally independent with earthquake magnitude and distance. This result also shows that the 

building classes affect the IM sufficiency, for e.g. SV2 is observed to be sufficient for RC building class 

but not in SRC and ST building class. These results suggest that particular attention should be paid 

when selecting the accelerometric time histories used to perform non-linear time history analysis or 

PBEE assessment. Furthermore, if insufficient IMs are considered, site-specific ground motion data 

must be provided to avoid inaccurate estimation of the damage levels or failure rates used in PBEE if 

the ground motion characteristics do not match the source and site requirements (Kazantzi & 

Vamvatsikos, 2015).  

Table 7 – p-values for the whole JPN dataset, and by JPN building class. Values in bold are greater 

than  0.05, i.e. the threshold for evaluating IM sufficiency. 

  PGA PGV PGD AI DP CAV SA1 SV1 SD1 SA2 SV2 SD2 

All 

JPN 

M 0.00 0.00 0.00 0.00 0.47 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.78 0.00 



 

 

RC 
M 0.00 0.00 0.23 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.42 0.00 

R 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.05 0.80 0.06 0.00 

SRC 
M 0.00 0.00 0.01 0.00 0.21 0.50 0.00 0.00 0.00 0.00 0.00 0.02 

R 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 

ST 
M 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 

R 0.00 0.00 0.03 0.00 0.74 0.00 0.00 0.00 0.44 0.00 0.00 0.00 

 

 
Figure 8. (a) Variability of σEDP|IM values as a function of the IMs concerned for different magnitude 

and earthquake-to-building distance criteria, considering the ANX single building dataset. 

Magnitude/distance criteria are R = 20 ± 50% and M= 3.5 ± 0.5 for MR1; R =120 ± 60% and M= 4.5 

± 0.5 for MR2; R = 250 ± 70% and M= 5.5 ± 0.5 for MR3. (b) Sufficiency analysis with respect to 

magnitude (o) and distance (x) observed for the JPN building class datasets. The dashed line 

corresponds to a p-value of 0.05. 

 

4.5 Within-building variability associated with aging - σA 

Fig. 9 shows the σEDP|IM variations as a function of the age of the ANX building. The four periods dataset 

corresponds to the ANX are considered here, focusing only on the M/R dataset corresponding to MR2 

(i.e. the dataset with the most data). Taking into account the actual structural state of the structure lowers 

the σEDP|IM. For example, for PGV/SV1/SV2, the σEDP|IM values correspond to 0.39/0.37/0.35 for the 

MR2-T2 ANX dataset and 0.37/0.37/0.26 for the MR2-T3 ANX dataset, compared with 0.41/0.41/0.37 

for the MR2 ANX dataset as a whole. A progressive reduction of σEDP|IM values is observed between T1 

and T4, the last two periods being the most efficient (Appendix A1). It, therefore, appears that taking 

into account the aging or actual state of a structure in performance analysis will help to modify the 

associated uncertainty, σEDP|IM, ultimately changing the efficiency of IM. 



 

 

 
Figure 9. Variation of σEDP|IM values as a function of the IMs for different periods, considering seismic 

cumulative damage in the ANX building. Magnitude/distance criteria (MR2) are R =120 ± 60% and 

M= 4.5 ± 0.5 and periods T1 to T4 are described in the manuscript. 

4.6 Summary 

Fig. 10 is a summary of the identification of the building response prediction uncertainties for the 

different IMs considered, based on available data and metadata. Tab. 8 summarizes the contribution of 

each component to the epistemic uncertainties of Eq. 9. While the regional distinction (σR) does not 

bring any significant gain (4% on average). It could be because of the fact that the Japanese dataset 

shares the higher portion in the whole dataset which may have impacted the value of sigma 

corresponding to the whole dataset.  Similarly, distinction by type of construction (σT) and specific 

building (σB) contributes significantly (19% and 21% respectively). Concerning the IMs that make EDP 

conditionally independent from magnitude M and source-to-site distance (σMR), the figure shows that 

all the IMs are globally non-sufficient, with a reduction of σEDP|IM values of approximately 19% for the 

specific case of the ANX building. When aging (σA), i.e. the actual health of the structure, is taken into 

account, the σEDP|IM values are reduced by 8%. Spectral values considering the co-seismic shifting of 

the fundamental period (index 2) (SA2, SV2, and SD2) allow a reduction of the σEDP|IM values of 

approximately 10%. Globally, PGV, SV1, and SV2 are observed to be the most efficient IM, i.e. they 

are associated with the lowest value of σEDP|IM.  

 

Figure 10. Summary of the variation of σEDP|IM values as a function of the IMs concerned, considering 

different components of the uncertainties in prediction models. 

Table 8 – Summary of the σEDP|IM values and their reduction (in %) applied to the specific ANX 

building. The Avg column is the mean value of all IMs. 

 PGA PGV PGD AI DP CAV SA1 SV1 SD1 SA2 SV2 SD2 Avg. 

σ 1.05 0.80 0.81 0.84 0.91 0.85 0.87 0.79 0.87 0.87 0.79 0.88 0.86 



 

 

σR 1.02 0.78 0.78 0.81 0.85 0.81 0.83 0.76 0.82 0.83 0.76 0.83 0.82 

σR/ σ 3 % 3 % 4 % 4 % 7 % 5 % 5 % 4 % 6 % 5 % 4 % 6 % 4 % 

σT 0.87 0.64 0.67 0.66 0.74 0.72 0.65 0.61 0.61 0.62 0.60 0.64 0.67 

σT/ σR 15 % 18 % 14 % 19 % 13 % 11 % 22 % 20 % 26 % 25 % 21 % 23 % 19 % 

σB 0.80 0.50 0.46 0.51 0.57 0.51 0.78 0.48 0.48 0.46 0.40 0.39 0.53 

σB/ σT 8 % 22 % 31 % 23 % 23 % 29 % -20 % 21 % 21 % 26 % 33 % 39 % 21 % 

σMR 0.55 0.41 0.35 0.41 0.41 0.48 0.61 0.41 0.42 0.37 0.37 0.29 0.42 

σMR/ σB 31 % 18 % 24 % 20 % 28 % 6 % 22 % 15 % 13 % 20 % 8 % 26 % 19 % 

σA 0.55 0.37 0.30 0.45 0.53 0.44 0.50 0.37 0.35 0.27 0.26 0.27 0.39 

σA/ σMR 0 % 10 % 14 % -10 % -29 % 8 % 18 % 10 % 17 % 27 % 30 % 7 % 8 % 

σA/ σ 48 % 54 % 63 % 46 % 42 % 48 % 43 % 53 % 60 % 69 % 67 % 69 % 55 % 

 

 

5. Building frequency variation and the average response spectral value as an IM 

In this study, the frequency variation with respect to EDP is observed for the JPN dataset by building 

class. Fig. 11 summarizes the variation of the frequency ratio fr=fmin/fi between pre-seismic frequency 

(fi) and co-seismic frequency fmin with respect to EDP for different JPN building classes and the whole 

US database, with EDP ranging from 5x10-6 to 10-2. The variation of fr confirms that, regardless of 

building class, the frequency shift between the pre- and the co-seismic period increases with EDP, 

which means large frequency drops occur for the strongest earthquakes. A significant variation of fr is 

observed even at the lower end of the EDP range from 0.9 to 0.65 (below the slight damage 

threshold=0.0025). For EDP values between 10-5 and 10-3, a relatively similar trend is observed 

regardless of building class, with fr values decreasing from 0.78 to 0.65. The non-linear variation of the 

building frequency for EDP < 10-3 may be linked with the slow dynamics phenomenon and soil-

structure interaction (Astorga et al. 2018). There are no stronger earthquakes, this result suggests the 

need to collect a large amount of earthquake data in buildings in order to refine our performance 

prediction models.  

 
Figure 11 – Variation of the frequency ratio (fr=fmin/fi) for different datasets. 

 

6. Conclusions 

Experimental data is very useful in helping us to understand the complex physical processes that occurs 

in civil engineering structures to be able to integrate them into our 



 

 

models to reduce the epistemic uncertainty of these complex process. Earthquake data collected from 

buildings under long-term monitoring in Japan, the US, and Romania were used to attempt to identify 

the components of the building response prediction uncertainties. Region-to-region, building-to-

building, and within-building uncertainties associated with earthquake magnitude-distance and aging 

were explored.  

Compared with the conventional IMs based on peak values or conventional spectral value (SA1, SV1 

or SD1), the ground motion intensity measure, denoted SA2, SV2, and SD2, which considers inelastic 

period lengthening, was found to be the most efficient IM for estimating EDP, taken as structural drift 

herein. In terms of sufficiency, generally speaking, it appears that no IMs are sufficient due to a 

significant conditional dependence of EDP on R (i.e. earthquake source-to-building distance) and M 

(i.e. magnitude). Some exceptions are pointed out in Fig. 8 for specific building classes and IMs. In 

fact, depending on the type of building and, in particular, its period, displacement, and acceleration IMs 

might be more efficient or sufficient; this could be confirmed with additional data and a specific analysis 

of the building characteristics, which is not considered by this study. Nevertheless, all our results 

indicate that velocity IMs (PGV, SV1, SV2) are those that provide the lowest variability for predicting 

EDP given IM. 

Based on the ANX building results, the components that make the largest contribution to overall 

uncertainties are building class and specific building associated with the M/R condition (Fig. 10, Tab. 

8). When analyzing specific buildings using long-term monitoring data, the real structural state also 

appears to make a significant contribution to the uncertainties, reflecting the real co-seismic demand in 

EDP prediction. The underlying key issue is related to the variation of frequency, which is strongly 

dependent on EDP. Note that regardless of building class, this frequency variation follows the same 

trend for all the drift values in our dataset. In general, the seismic analysis and PBEE is carried out by 

considering the height and material. Limited studies have been carried out by considering the real 

structural state of the structures. We found out that taking into account the actual structural state could 

reduce the sigma by 8% in average and 30% for the most efficient IMs (Tab. 8). This result highlights 

the importance of instrumentation and continuous monitoring of the health of the structures in order to 

have a reliable assessment of the potential loss due to earthquakes. In addition, having more information 

on the earthquakes and descriptions of the building characteristics would help to improve the prediction 

of structural response for analyzing seismic vulnerability or loss assessment. Although the amount of 

data contained in our dataset provides relevant results, the paucity of data concerning specific classes 

of buildings or components of uncertainties limits the strength of the conclusions that can be drawn. To 

resolve outstanding issues, we must continue our international collaborative efforts and motivate 

building owners to share their data, which would increase their interest in this type of study. In 

particular, having more specific data would enable verification of the aforementioned conclusions.  

Moreover, building response prediction models can be developed considering several parameters 

related to earthquakes and buildings, such as ground motion IM, magnitude, distance, building 

typology, height, structural properties, etc. (FEMA, 1999; Hancock et al., 2008; Perrault & Guéguen, 

2015). In conclusion to this study, an empirical building damage prediction model is proposed (Tab. 9) 

based on the entire dataset (US, Japan, and Romania) according to building class and considering the 

most efficient IMs (SV2 and PGV) using the functional form given in Eq. 9: 

𝑙𝑜𝑔(EDP) = a + b. log(IM) + ε 

Table 9- Empirical building damage prediction model according to building class. 

IM  Parameter BT-ALL BT-RC BT-SRC BT-ST BT-MA BT-WO 

 

SV2 
a -10.22 -10.65 -10.00 -9.81 -9.17 -9.26 

b 0.87 0.83 0.89 1.08 0.55 0.58 

σ 0.79 0.84 0.60 0.60 1.10 0.68 

 

PGV 
a -9.41 -9.78 -9.21 -9.17 -8.80 -9.02 

b 0.94 0.86 0.95 1.16 0.60 0.55 

σ 0.80 0.87 0.64 0.80 1.07 0.71 

 



 

 

Several seismic risk assessment frameworks consider building heights as one of the criteria in building 

classification.  Further investigations on the variation of sigma could be carried out by grouping the 

buildings according to the height of the buildings. Fig. 11 shows a significant variation of the building 

frequency as a function of EDP, additional investigation on the efficiency and sufficiency of IMs over 

different EDP ranges could be carried to explore the contribution of change in the real structural state 

of structures. Studies have shown that the soil-structure interaction plays a significant role in the 

structural response, investigation on the variation of sigma due to the soil-structure interaction system 

could be interesting. In addition, the early-warning parameters available in the database could be used 

to investigate the relationship between early warning parameters and the structural response in order to 

develop building response prediction models for onsite early warning systems. 
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Appendix 

Table A1. σIM, σEDP, and σEDP|IM values considering different sub datasets discussed in the manuscript 

 

   PGA PGV PGD AI DP CAV SA1 SV1 SD1 SA2 SV2 SD2 

US+JPN 

+RO 
ALL 

IM 1.15 1.33 1.63 2.29 3.35 1.21 1.53 1.31 1.43 1.63 1.44 1.61 

EDP 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 

EDP|IM 1.05 0.80 0.81 0.84 0.91 0.85 0.87 0.79 0.87 0.87 0.79 0.88 

US data 

 

ALL 

IM 0.90 1.07 1.49 1.73 2.73 0.96 1.03 1.04 1.35 1.09 1.08 1.54 

EDP 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 

EDP|IM 1.19 1.00 0.98 1.01 1.07 0.97 1.14 1.03 1.08 1.18 1.01 1.08 

STS1 

IM 0.86 0.94 1.15 1.48 2.20 0.77 1.00 1.06 1.20 1.03 1.08 1.31 

EDP 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 

EDP|IM 1.14 1.00 0.93 1.00 1.07 0.93 1.15 1.03 1.03 1.15 1.01 1.03 

STS2 

IM 0.74 0.85 1.15 1.49 2.29 0.84 0.92 0.95 1.20 0.95 0.92 1.29 

EDP 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

EDP|IM 1.12 1.01 0.99 1.00 1.06 0.98 0.97 1.01 1.10 1.04 1.01 1.10 

RC 

IM 0.84 0.98 1.47 1.58 2.63 0.91 1.03 1.03 1.25 1.07 1.04 1.31 

EDP 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 

EDP|IM 1.21 0.94 0.94 0.99 1.03 0.93 1.20 1.01 0.91 1.22 0.99 0.90 

ST 

IM 0.84 1.01 1.46 1.55 2.78 0.87 0.91 1.02 1.32 0.99 1.08 1.64 

EDP 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.29 1.28 1.28 1.29 1.28 

EDP|IM 1.20 0.93 0.91 0.97 1.01 0.89 1.13 1.02 0.99 1.19 0.98 0.99 

MA 

IM 0.91 1.08 1.43 1.83 2.35 1.02 0.94 1.27 1.71 1.00 1.18 1.46 

EDP 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.21 1.21 1.23 1.23 1.23 

EDP|IM 1.11 1.07 1.01 1.02 1.10 1.00 1.11 1.12 1.15 1.14 1.12 1.14 

WO 

IM 1.02 1.36 1.83 2.20 3.21 1.21 1.07 1.32 1.60 1.06 1.32 1.65 

EDP 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

EDP|IM 0.66 0.71 0.81 0.71 0.77 0.75 0.67 0.69 0.72 0.70 0.68 0.70 

Japanese 

ALL 

IM 1.11 1.31 1.61 2.26 3.34 1.22 1.50 1.30 1.42 1.61 1.43 1.61 

EDP 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 

EDP|IM 1.02 0.78 0.78 0.81 0.85 0.81 0.83 0.76 0.82 0.83 0.76 0.83 

RC 

IM 0.98 1.13 1.50 2.02 2.98 1.12 1.25 1.09 1.22 1.37 1.20 1.35 

EDP 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 

EDP|IM 0.98 0.86 0.92 0.84 0.93 0.85 0.79 0.86 0.95 0.73 0.82 0.98 

SRC 

IM 1.14 1.40 1.66 2.36 3.53 1.24 1.48 1.37 1.46 1.56 1.52 1.68 

EDP 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 

EDP|IM 0.87 0.64 0.67 0.66 0.74 0.72 0.65 0.61 0.61 0.62 0.60 0.64 

ST 

IM 1.11 1.24 1.61 2.18 3.24 1.21 1.72 1.37 1.56 1.65 1.43 1.70 

EDP 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 

EDP|IM 1.36 0.76 0.46 0.87 0.67 0.65 0.80 0.70 0.78 0.59 0.50 0.48 

ANX 

building 

ALL 

IM 1.00 1.27 1.51 2.12 3.25 1.13 1.54 1.31 1.42 1.44 1.41 1.59 

EDP 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 

EDP|IM 0.80 0.50 0.46 0.51 0.57 0.51 0.78 0.48 0.48 0.46 0.40 0.39 

STS 

IM 1.01 1.28 1.50 2.13 3.25 1.13 1.55 1.32 1.43 1.45 1.42 1.60 

EDP 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 

EDP|IM 0.80 0.50 0.45 0.50 0.56 0.50 0.78 0.48 0.47 0.45 0.39 0.39 

MR1 

IM 0.69 0.80 0.90 1.30 2.10 0.65 1.06 0.85 0.91 0.89 0.88 0.97 

EDP 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

EDP|IM 0.59 0.42 0.38 0.46 0.52 0.46 0.62 0.40 0.37 0.39 0.34 0.33 

MR2 IM 0.71 0.75 0.78 1.16 1.82 0.57 1.21 0.79 0.89 0.89 0.79 0.86 



 

 

EDP 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 

EDP|IM 0.55 0.41 0.35 0.41 0.41 0.48 0.61 0.41 0.42 0.37 0.37 0.29 

MR3 

IM 0.79 0.86 0.96 1.47 2.17 0.73 1.10 0.85 0.93 0.88 0.92 1.03 

EDP 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

EDP|IM 0.57 0.46 0.52 0.47 0.59 0.47 0.75 0.47 0.52 0.47 0.35 0.40 

T1-

MR2 

IM 0.83 0.95 1.02 1.58 2.19 0.81 1.18 0.92 0.99 0.98 0.98 1.05 

EDP 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

EDP|IM 0.64 0.51 0.50 0.50 0.55 0.51 0.81 0.46 0.45 0.44 0.45 0.46 

T2-

MR2 

IM 0.66 0.77 0.89 1.24 1.93 0.61 1.17 0.86 0.94 0.86 0.84 0.90 

EDP 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

EDP|IM 0.59 0.39 0.37 0.43 0.57 0.42 0.62 0.37 0.33 0.33 0.35 0.31 

T3-

MR2 

IM 0.60 0.71 0.80 1.14 1.98 0.57 0.91 0.78 0.82 0.79 0.80 0.90 

EDP 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

EDP|IM 0.55 0.37 0.30 0.45 0.53 0.44 0.50 0.37 0.35 0.27 0.26 0.27 

T4-

MR2 

IM 0.63 0.75 0.90 1.22 2.13 0.61 0.98 0.83 0.87 0.91 0.89 1.01 

EDP 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

EDP|IM 0.61 0.39 0.30 0.43 0.42 0.41 0.46 0.37 0.34 0.25 0.25 0.25 

 

 


