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1 Introduction

While we are marching into a Big Data world with an exponential increase in seismic

recordings (Kong et al., 2019), nevertheless, a large amount of data does not mean a

large amount of information. Data might be irrelevant, corrupted, noisy or incomplete. It

seems inevitable and even more necessary to deal with bad data for a risk-informed design

of structures and infrastructure in earthquake prone regions (Beer et al., 2013; Ching &

Phoon, 2019). Inaccuracies in the data might be propagated through the model and affect

further analyses (for example spectral analyses) and finally compromise the credibility

of the analysis. Reliable methodologies and relevant procedures/tools that can identify

and even handle those data problems are of great interests to both earthquake engineers

and seismologists. Specifically, attentions are paid to reflect the degree of indeterminacy

from the sparse information, and to account for the uncertainties with the model and the

imperfect data. For example, evolutionary power spectrum models serve as potent charac-

terization for ground motion . Their estimation requires both an in-depth understanding

of the underlying physics of the problem and a relatively significant amount of data. How-

ever, both components are only available with a remaining degree of indeterminacy.

To understand the challenges related to modeling and characterization of ground mo-

tions given scarce and limited data, this deliverable reviews recent development of method-

ologies that improve spectral estimation from ground motion recordings (Section 2), sim-

ulate ground motion based on stochastic processes models and Generative modeling tech-

niques (Section 3), and also present spectral analyses that calculate uncertainties over

spectral estimation with incomplete data (Section 4).

2 Modeling ground motion as random processes

Owing to the influence of a series of uncontrollable factors like the mechanism of the

seismic source, propagation paths and geotechnical media distribution at the engineering

site, the ground motion is typically considered as stochastic processes (Liu, 1968, 1970).

Actual earthquake records show that the time history of the ground motion accelerations

usually includes three stages of vibrations: the initial, the strong and the attenuating

stages. Therefore, the ground motion is a typical nonstationary process (Liu, 1970), whose

statistical characteristics are changing with time. But stationary process model is also

used to establish the ground motion models, it is usually believed that this only reflects
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its strong motion stage (Li & Chen, 2009).

2.1 Spectral representation of random processes

For a deterministic continuous signal x(t), the Fourier transform is used to describe its

spectral content. Similarly, in order to describe the random processes in the frequency

domain, power spectral density (PSD) is adopted to describe how power is distributed

over frequency. Summation or integration of the spectral contents thus yields the total

power, identical to what would be obtained by integrating x2(t) over the time domain, as

suggested by Parseval’s theorem.

2.1.1 PSD of a stationary process

Given a random process {X(t) : t ∈ T}, a truncated version could be defined as (Miller &

Childers, 2012):

Xt0(t) =

 X(t), |t| ≤ t0

0, |t| > t0
(1)

Based on Parseval’s theorem, the time-averaged power can be given by :

PXt0 =
1

2t0

∫ ∞
−∞

Xt0(t)2dt =
1

2t0

∫ ∞
−∞
|Xto(f)|2df (2)

Since PXt0 is random variable, to get the ensemble averaged power, an expectation is

taken:

E[PXt0 ] =
1

2t0

∫ ∞
−∞

E[|Xt0(f)|2]df (3)

The power in the (untruncated) random process X(t) is then found by passing to the

limit as t0 →∞,

PX = lim
t0→∞

1

2t0

∫ ∞
−∞

E[|Xt0(f)|2]df =

∫ ∞
−∞

lim
t0→∞

E[|Xt0(f)|2]

2t0
df (4)

Define the PSD as the integrand of the power (i.e. PX) in the last equation:

SXX(f) = lim
t0→∞

E[|Xt0(f)|2]

2t0
(5)

Therefore SXX(f) has the units of power per unit frequency and hence the name power

spectral density of the random process.
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2.1.2 EPSD of a non-stationary process

Clearly, the time-dependent frequency content of a signal cannot be precisely captured

by ordinary Fourier analysis as the associated transform provides only the average spec-

tral composition of a signal. Correspondently, The evolutionary power spectral density

(EPSD) reflects the time-varying frequency-domain energy distribution of the nonsta-

tionary stochastic process. A zero-mean non stationary process can be represented by

(Priestley, 1967; Stoica et al., 2005):

f(t) =

∫ ∞
−∞

A(ω, t)eiωtdZ(ω) (6)

where A(ω, t) represents a deterministic modulating function and Z(ω) is a spectral

process with orthogonal increments. Then the EPSD of the nonstationary process is

defined as (Wang et al., 2018):

Sff (ω, t) = |A(ω, t)|2Sf̄f (ω) (7)

where Sf̄f (ω) is the power spectral density of the associated stationary process:

f̄(t) =

∫ ∞
−∞

eiωtdZ(ω) (8)

and Z(ω) satisfies:

E[|dZ(ω)|2] = Sf̄f (ω)dω (9)

2.2 Spectral estimation from earthquake recordings

2.2.1 Non-parametric PSD estimators

To apply advanced spectral analysis techniques for systems and structures, power spec-

tra provide a potent load characterisation. The periodogram estimate of estimating the

power spectra based on a ground motion record xL(n) is to find the discrete time Fourier

transform and appropriately scale the magnitude squared of the results.

Pxx(f) =
1

LFs

∣∣∣∣ L−1∑
n=0

xL(n) · e−2jfnπ/Fs

∣∣∣∣2 (10)

where Fs is the sampling frequency and L is the length of the recording.

To mitigate the effect of spectral leakage, windowing functions have been introduced

to modify traditional periodogram method, at the cost of reducing resolution though. In

comparison, Welch’s method, which computes the modified periodogram of the segments of
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the recording and take the average, results in a smooth PSD estimate. The averaging tends

to decrease the variance of the estimate relative to a single periodogram estimate of the

entire data record. Still, the combined use of data segments and windowing function lead

to reduced resolution. Varying the parameters in Welch method represents the tradeoff

between variance reduction and resolution.

2.2.2 Evolutionary spectra estimation via Wavelet Transform

Classical Fourier analysis can provide only the average spectral composition of a signal,

hence it cannot capture the time-dependent frequency change of a non-stationary signal.

In comparison, several other techniques have been employed to estimate the EPSD from,

for example, a ground motion time-history record, such as Wigner-Ville method (WVM) or

STFT. However, it’s argued that both WVM and STFT have certain limitations (Spanos

& Failla, 2004). For example, a WVM time-dependent spectrum cannot reflect the actual

local behavior of the process at time t, while STFT has the resolution dilemma. As such,

wavelet-based spectral estimation methods have been developed (Iyama & Kuwamura,

1999). The harmonic wavelets (HW) and the generalized harmonic wavelets (GHW),

which were both proposed by Newland, have been applied later in the EPSD estimation

of the nonstationary stochastic process (Spanos et al., 2005; Beer et al., 2019).

Consider a function f(t) with finite energy (i.e.
∫∞
−∞ |X(t)|2dt < ∞), the continuous

wavelet transform is defined as:

W (u, s) =
1√
s

∫ ∞
−∞

f(t) ·Ψ∗( t− u
s

)dt (11)

in which Ψ(t) is the mother wavelet function, u is the scale parameter and s is the time

parameter. The asterisk denotes the complex conjugate. The function f(t) can be recon-

structed from W (u, s) via the double integral representation:

f(t) =
1

2πCΨ

∫ ∞
−∞

∫ ∞
−∞

1

s2
W (u, s)Ψ(

t− u
s

)duds (12)

with the assumption:

CΨ =

∫ ∞
−∞

|Ψ̂(w)|2

|w|
dw <∞ (13)

where Ψ̂(w) represents the Fourier transform of Ψ(t), defined as:

Ψ̂(w) =
1√
2π

∫ ∞
−∞

Ψ(t)e−iwtdt (14)
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It may be noted that wavelet transform decomposes signal f(t) over dilated and trans-

lated wavelets. W (u, s) represents the contribution of the function f(t) in the neighbor-

hood of t = u and in the frequency band corresponding to scale s. It can also be shown

that: ∫ ∞
−∞
|f(t)2|dt =

∫ ∞
−∞

[
1

2πCΨ

∫ ∞
−∞

∫ ∞
−∞

1

s2
|W (u, s)|2duds

]
× |Ψ̂u,s(w)|2dw (15)

where Ψ̂u,s(w) represents the Fourier transform of Ψ[(t − u)/s] and can be given as

Ψ̂u,s(w) =
√
sΨ̂(sw)eiwu. Then by using Parseval’s identity, one can write:

|F (w)|2 =
1

2πCΨ

∫ ∞
−∞

∫ ∞
−∞

1

s2
|W (u, s)|2|Ψ̂u,s(w)|2duds (16)

where F (w) represents the Fourier transform of f(t). As the wavelet coefficients

W (u, s) provides the localized information of signal at t = u, the EPSD Sf0f0(t, w) can be

expressed as:

|F (t, w)|2 =
1

2πCΨ

∫ ∞
−∞

∫ ∞
−∞

1

s2
|W (t, s)|2|Ψ̂t,s(w)|2ds (17)

It may be noted that the above equation obeys total energy equilibrium. Therefore,

any wavelet basis that satisfies
∫∞
−∞ |Ψ̂u,s(w)|2dw = 1 can be used.

3 Stochastic modeling and simulation of ground motions

In order for the characterization, simulation, and response evaluation of ground motion

processes, stochastic ground motion model is often used (Douglas & Aochi, 2008). A pre-

vailing application is for these models to synthesize artificial spectrum-compatible ground

motion processes (to provide stochastic citations) for structural nonlinear response anal-

ysis and seismic reliability evaluation. Current practices suffer from scarcity of recorded

ground motions for specified earthquake scenarios and require careful scaling of recorded

motion spectrum matching, which is sometimes criticized as unrealisitc (Wang et al., 2018;

Vlachos et al., 2018; Rofooei et al., 2001; Rezaeian & Der Kiureghian, 2010).

3.1 Stationary models - Kanai Tajimi model

Based on Kanai’s investigation on the pattern of the spectra from many past earthquake

records, Tajimi proposed the following relation for the spectral density function of the
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Figure 1: Ground layers represented by a linear system (Liu, 1968)

strong ground motion with a distinct dominant frequency (Tajima, 1960; Kramer, 1996;

Liu, 1968).

G(ω) =
1 + 4ξ2

g(ω/ωg)
2

1− (ω/ωg)2 + 4ξ2
g(ω/ωg)2

G0 (18)

where G0 is the constant power spectral density of the input white noise process;

ωg and ξg can be interpreted as the characteristic frequency and damping ratio of the

ground (Rofooei et al., 2001). The Kanai-Tajimi power spectral density function may

be interpreted as a filtered white noise process (see Fig 1), with stationary white noise

excitation at the bedrock and ground layer as a single-degree-of-freedom system (Liu,

1968).

3.2 Non-stationary models for ground motion

Obviously, the most significant limitation of the Kanai-Tajimi model is its stationarity.

Several attempts have therefore been made to extended it into non-stationary models

(Rofooei et al., 2001; Lin & Yong, 1987; Vlachos et al., 2018). In more details, recorded

earthquake ground motions usually exhibit nonstationarity both in frequency contents

and also their intensity (Der Kiureghian & Crempien, 1989). Temporal nonstationarity

refers to the variation in the intensity of the ground motion in time while spectral non-

stationarity means the variation in the frequency contents. Fig. 2 shows a model that

accounts for both the temporal and spectral nonstaionarities of the ground motion (Reza-

eian & Der Kiureghian, 2008). It can be seen, a simulated time-history is passed through

a high-pass filter to assure zero residual velocity and displacement, as well as to produce

reliable response spectral values at long periods. In more details, before high-pass filtering,

the ground acceleration process x(t) is obtained by time-modulating a normalized filtered

white-noise process with the filter having time-varying parameters. In a continuous form,
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the model is defined as:

x(t) = q(t,α)

{
1

σh(t)

∫ t

−∞
h[t− τ,λ(τ)]w(τ)dτ

}
(19)

where q(t,α) is a deterministic, nonnegative, time-modulating function with parame-

ters α controlling shape and intensity, which has completely defined the temporal charac-

teristics of the process. w(τ) is a white-noise process, and the integral inside the curved

brackets is a filtered white noise process with h[t− τ,λ(τ)] denoting the impulse-response

function of the filter with time varying parameters λ(τ), which define the spectral char-

acteristics of the process.

Over the years, many more stochastic models have been proposed from different per-

spectives. In summary, those representative models can be categorized into four main

classes (Rezaeian & Der Kiureghian, 2008; Douglas & Aochi, 2008): (a) Processes ob-

tained by passing a white noise through a filter, with subsequent modulation in time to

achieve temporal nonstationarity. But these processes have time-invariant frequency con-

tent. (b) Processes obtained by passing a train of Poisson pulses through a filter. Through

modulation in time, these processes can possess both temporal and spectral nonstation-

arities. However, matching with recorded ground motions is difficult. (c) Auto-regressive

moving average models. By allowing the model parameters to vary with time, these mod-

els can have both temporal and spectral nonstationarity. However, it’s difficult to relate

the model parameters to any physical aspects of ground motion. (d) Developing a time-

varying spectral representation, which requires extensive processing of the target recorded

ground motion.

3.3 Simulation of ground motions from stochastic process models

Due to the scarcity of recorded ground motions for specified earthquake scenarios (magni-

tude, distance, type of faulting, site conditions, etc), stochastic models have been widely

used to simulate ground motions to provide input excitations for structural analysis (Ro-

fooei et al., 2001; Liu, 1970; Shinozuka & Deodatis, 1991; Liang et al., 2007; Wang et al.,

2018). Examples are the prediction of ground motion at a certain site where no past

records are available, and statistical analyses of structural responses based upon very

limited actual ground-motion records. (Liu, 1968) As suggested by the random vibra-

tion theory, the randomness involved in the excitations should be taken into account. In

this sense, by applying the spectral representation method (see below), the EPSD models
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Figure 2: A stochastic ground motion model with separable temporal and spectral non-

stationarities (Rezaeian & Der Kiureghian, 2008)

are able to simulate nonstationary and spectrum-compatible ground motion processes for

structural nonlinear response analysis and seismic reliability evaluation.

3.3.1 Spectral representation method

Consider a 1D-1V stationary stochastic process f0(t) with mean value equal to zero, au-

tocorrelation function Rf0f0(τ) and a two-sided power spectral density function Sf0f0(ω).

The stochastic process can be simulated by the following series as N →∞ (Shinozuka &

Deodatis, 1991):

f(t) =
√

2

N−1∑
n=0

An cos(ωnt+ Φn) (20)

where An =
√

2Sf0f0(ω)∆ω, wn = n∆ω in which ∆ω is calculated by a cut-off fre-

quency value ωu via ∆ω = ωu/N , such that beyond ωu the power spectral density function

may be assumed to be zero.

A sample function f (i)(t) of the simulated stochastic process can be obtained by re-

placing the sequence of random phase angles with their respective realization:

f (i)(t) =
√

2
N−1∑
n=0

An cos(ωnt+ φ(i)
n ) (21)

Similarly, when it comes to simulating nonstationary stochastic processes, consider a

stochastic process f0(t) with mean value equal to zero, autocorrelation function Rf0f0(t, t+

τ) and a two-sided PSDF Sf0f0(t, ω). The stochastic process can be simulated by the
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following series as N →∞ (Liang et al., 2007):

f(t) =
√

2

N−1∑
n=0

√
2Sf0f0(t, ωn)∆ω cos(ωnt+ Φn) (22)

where Φn are uniformly distributed random phase angles in the range of 0 ≤ Φn ≤ 2π

and N related to the discretization of the frequency domain.

3.3.2 Simulation of ground motions for certain earthquake scenarios

Many stochastic ground motion models, either stationary or nonstationary, work by fitting

a parameterized stochastic model to a (target) recorded ground motion, thereby generating

similar synthetic time histories. But in recent years, improved models have been proposed

to model and simulate ground motions for specified earthquakes and site characteristics

(Rezaeian & Der Kiureghian, 2010; Vlachos et al., 2018). In order to relate the stochastic

model parameters to earthquake and site characteristics of recorded motions, regression

models (i.e. empirical predictive equations) have been constructed for each of the model

parameters in terms of the earthquake characterization variables (e.g. F,M,Rrep, Vs30)

through regression analysis of the fitted parameter values.

Rezaeian & Der Kiureghian (2008) proposed an approach to assign probability distri-

bution to stochastic model parameters based on empirical data obtained from fitting the

model to a subset of NGA strong motion database. Let θi denote the ith model parameter

and Fθi(θi) denote the marginal cumulative distribution fitted to the data. The marginal

transformation is given by:

vi = Φ−1[Fθi(θi)] (23)

where Φ−1[.] is the inverse of the standard normal CDF; vi is the transformed standard

Gaussian random variable, which are used as a surrogate to relate to the variables defining

earthquake and site characteristics, as shown below:

vi = µi(Earthquake, Site,βi) + εi (24)

where µi represents a selected predictive formula for the conditional mean of vi given

the earthquake and site characteristics, and βi represents the vector of regression coeffi-

cients.
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3.4 Simulation of ground motion with GANs

The booming of Deep Leaning has unlocked a whole new perspective of simulating ground

motions. Considering the recent explosion in seismological data collection and the many

exciting developments in modern machine learning, the prospects that an artificial in-

telligence system could provide on-demand, accurate and realistic ground motion time

histories for engineering purposes is tempting (Kong et al., 2019; Florez et al., 2020).

Generative models are a class of statistical models that attempt to capture the un-

derlying probability distribution of a dataset. In particular, they are trained to produce

data that looks as if it was sampled from the original training set. Much progress and

successful, some even revolutionary applications, have been seen in other domains such as

generation of high-resolution realistic-looking images of human faces, audio and video se-

quences; text generation; artistic style transfer, etc (LeCun et al., 2015; Goodfellow et al.,

2016).

In short, GANs (Generative Adversarial Networks) enable the generation of fairly re-

alistic synthetic images by forcing the generated images to be statistically almost indistin-

guishable from real ones. Conceptually, it works as two trained networks competing with

each other — the first one is a generator that transforms a random input into a synthetic

image or sequence, while the other one discriminator trying to differenciate between the

output of the generator and real images from a training dataset. The generator network is

trained to be able to fool the discriminator network, and thus it evolves toward generating

increasingly realistic images as training goes on. It should be noted that, unlike classical

dense neural networks that only involve gradient descent during backpropagation, GANs

is a dynamic system where the optimization process is seeking not a minimum, but an

equilibrium between two forces. Therefore, theoriotically speaking, GANs is much harder

to train.

Some pioneering efforts have been seen towards applying GANs to generate synthetic

seismograms (Li et al., 2018; Wang et al., 2019; Mosser et al., 2020). As an effort to

generate time histories with certain earthquake scenarios, some physical parameters are

first identified to characterize earthquake scenarios, common choices are magnitude M ,

event-station distance R and shear wave speed Vs30.

Under the formulation of Wasserstein Generative Adversarial Networks, the discrimi-
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Figure 3: Diagram of the conditional GAN model (Florez et al., 2020)

nator is trained to solve an optimization problem:

max
D

Ex∼Pr [D(x)]− Ez∼p[D(G(z))] (25)

where D(x) ∈ R and z ∼ p implies that z is sampled from a Gaussian distribution p.

By adding a regularization term to the discriminator objective function:

LD = Ez∼p[D(G(z))]− Ex∼Pr [D(x)] + λEx′∼Px′
[(||∇x′D(x′)||2 − 1)2] (26)

where λ is a constant, and x′ is uniformly sampled along straight lines connecting points

in Pr (the data distribution) and Pg (the distribution defined by the generator model). The

generator is adversarially trained by minimizing the following objective function:

LG = −Ez∼p[D(G(z))] (27)

Building on the above framework, Florez et al. (2020) proposed to combine the GAN

model with a couple of earthquake-related parameters. As shown in Fig.3, a random white

noise z and these extra parameters (i.e. as conditional variables v) are combined into a

mapping to output accelerogram via the generator — G : {v, z} → w. The mapping then

implicitly defines a conditional probability distribution Pg(w|v).
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4 Spectral analysis with incomplete data

A realistic characterisation of earthquake loads that reflects all their uncertainties is the

key requirement, and at the same time, the greatest challenge, for a risk-informed design

of structures and infrastructure in earthquake prone regions. To apply advanced spectral

analysis techniques for systems and structures, evolutionary power spectra provide a po-

tent load characterization. Their estimation requires both an in-depth understanding of

the underlying physics of the problem and a relatively significant amount of evenly sampled

data. However, both components are only available with a remaining degree of indeter-

minacy. Our models are approximate and do not capture all phenomena completely. In

reality, our data are often sparse, have gaps in the records, and offer only limited insight

into dependency structures.

4.1 Fitting spectrum to incomplete recording with Maximum Likelihood

Spectral analysis of earthquake recordings is one of the most fundamental analysis in many

seismological applications. But in reality missing data in measurements is frequently an

unavoidable situation. Therefore, a challenge remains as how to reliably fit a parametric

spectrum to earthquake recordings with incomplete data.

In order to fit a parametric spectral model to an observed seismogram, the likelihood

of seeing measurements Y given a spectrum u, the conditional probability distribution is

given as (Maranò et al., 2017):

p(Y|u) = βN (F−1y;u,F−1VZF
−T) (28)

in which β is constant, VZ is the noise variance matrix and F represents an operation

akin to an inverse Fourier transform. The maximum likelihood estimate of the parameter

vector can be given as:

η̂ = arg min
η

(y − Fu(η))TV−1
Z (y − Fu(η)) (29)

Moreover, in the presence of data gaps, treat the spectrum as a random variable U

with a Gaussian prior:

U ∼ N (0, α−1I) (30)

in which α is a regularization parameter to be estimated from data. The likelihood of

observations as a function of α is:

p(Y = y|α) =

∫
p(Y = y,u|α)du (31)
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(a) Observed seismogram and its MLE fit (b) Reconstructed incomplete seismogram

Figure 4: Spectra fitting using MLE with incomplete data (Maranò et al., 2017)

The Maximum likelihood estimation of η in the incomplete case is analogous in the

complete case. The conditional PDF of Y given η is:

p(Y |η) = N (Y;PFu(η),VZ) (32)

A maximum likelihood estimate of η is found by maximizing the likelihood, i.e. arg max p(Y |η).

Fig. 4 displays an example of the spectral fitting method applied to a real seismogram with

incomplete data, see for (Maranò et al., 2017) details.

4.2 Estimation of PSD with incomplete data using Dense neural net-

works

In the time domain, neural networks can be used in an autoregressive manner, trying to

predict the missing time points. A statistical mapping can be established on lagged values

of the variable of interest. In a simple one-step-ahead setting, based on a continuous

recording, windows of data that has the length of p + 1 numbers of values, with the first

p as features and the rest one value as target, can be extracted. However, a real challenge

is we might need full data sequence to train a model in the first place. Comerford et al.

(2015) proposed to fill in the missing data points first by drawing random values from a

distribution based on the known data.

The cumulative distribution function (CDF) of known data is estimated by sorting the

data in order of size, joining the CDF with a polynomial spline. Random values are drawn

from:

ai = F−1(U(0,1)) (33)
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(a) Diagram for an autoregressive model (b) Filling missing data on a stationary process

Figure 5: Illustrations of the dense neural network model (Comerford et al., 2015)

where F−1 is the inverse CDF of the known data and U(0,1) represents random values

drawn from a uniform distribution.

With a gap of missing data in the middle of a data sequence, the known data before and

after the gap can be adopted to train models to predict inward. Phan (2020) accordingly

suggested a univariate imputation approach. The main idea of such a method can be seen

in the diagram (see Fig. 6).

4.3 Uncertainty quantification with missing data imputation

Besides these efforts mentioned above, there are other deterministic imputation methods

that have been proposed over years, such as Compressive Sensing (Comerford et al., 2016),

least squares method (Lomb, 1976; Scargle, 1982), ARIMA (Broersen & Bos, 2006), Sin-

gular spectrum analysis (Kondrashov & Ghil, 2006), CLEAN algorithm (Baisch & Bokel-

mann, 1999), etc. Among them, many methods first reconstruct the missing data in the

time domain and then use the classical spectral analysis methodologies (such as Fourier or

wavelet transform) to obtain PSD estimates. Since no method can perfectly reconstruct

the missing data, the inaccuracies from the imputation will be propagated to further

spectral estimations. Therefore, these estimates could be misleading as they provide no

information about the degree of uncertainty related to the original incomplete data. This

leads to the need of considering the uncertainty in spectral estimates when confronting

missing data in the signals.

Based on one type of interpretation of a stochastic process that considers it as a

collection of random variables indexed by time (in the context of discrete-time stochastic

processes). Naturally, one would think about modeling each missing data point as random
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Figure 6: Scheme of univariate missing data imputation approach (Phan, 2020)

variable and thus filling in the missing value with a random sample from its underlying

probability distribution. The question, however, being how to determine the PDF of the

random variable Xi for the stochastic process {X(t)}t∈T so that one can draw samples

from it? Naively, Comerford et al. (2015) proposed to fill in missing data points using

samples from standard Gaussian distribution, provided the original signal being normalized

first. In this manner, many realizations of imputation can be obtained by Monte Carlo

simulations and thus an ensemble of PSD estimates regarding each frequency component

can be further obtained. Such a probabilistic power spectrum then provides a tool to

express the uncertainty on the PSD estimates under missing data. Importantly, a closed-

form expression has been derived for the PDF of the power spectrum value corresponding

to a specific frequency value, see (Comerford et al., 2015) for details.

Building on the assumption of modeling missing data as random variables, Zhang

16



Figure 7: PSD with 10% missing data replaced by correlated Gaussian random variables

(Zhang et al., 2017)

et al. (2017) model the missing data using a multivariate Gaussian distribution in which

correlation between missing points (i.e. random variables) are taken into account, and

Kriging model is used to estimate the mean and covariance matrix of the missing data.

Fig. 7 displays the results of filling in missing data to a stationary realization of time

history generated from a Kanai-Tajimi PSD model. Notably, the PDF of the power

spectral density estimates corresponding to each frequency component can also be seen in

this figure.

5 Final remarks and conclusions

This deliverable presents a concise review of the recent literature regarding simulating

ground motions via stochastic models and spectral estimation methods given incomplete

ground motion recordings.

Due to the scarcity of recorded ground motions for specified earthquake scenarios,

there’s a trend, building on many stochastic process models (stationary and non-stationary),

to link a stochastic model with certain earthquake scenarios. For example they usu-

ally relate model parameters with selected earthquake characterization variables, such as

M,R, Vs30. It can also be noticed the latest attempt of using trending Generative mod-

eling techniques (such as GANs) in Deep Learning in this direction. As a method known

for excellent performance in many other domains, such as human face generation, music

generation, etc., Generative modeling techniques, which are also inherently probabilistic,

might provide another perspective to classical stochastic process methods.
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For the challenge of spectral representation with incomplete data, it’s suggested that

an important part of this challenge is quantifying the uncertainties over the imputation as

no reconstruction is perfect and such uncertainties will be further propagated to further

spectral analyses. An attempt of using Dense neural networks in an autoregressive manner,

which is in essence doing time series forecasting, is summarized in this report. But the

prospects of using a Recurrent neural network, which is another Deep Learning architecture

renowned for dealing with sequence data such as text generation, hasn’t been examined

yet. Also, a Bayesian version of these neural network models seem to be even more suitable

considering the goal of uncertainty quantification. Implicit to the use of these Bayesian

neural networks that indeed work in time domain is the challenge of how to train these

models given incomplete data since, in normal settings, we may need complete data in the

first place to train a neural network model.

Alternative to methods that reconstruct the incomplete recording in the time do-

main, the booming developments in the field of Generative modeling has provided new

perspectives for doing missing data imputation based on two-dimensional data, such as

spectrograms (a two-dimensional time-frequency representation). Similarly, the challenge

exists as how to train a reliable model given the scarcity of recorded ground motions for

specified earthquake scenarios. Simulations of ground motion by using a stochastic model

or a GAN model might be handy in this regard, but under this scheme, a comprehensive

characterization of the uncertainty propagation will be indispensable.
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Baisch, Stefan, & Bokelmann, Götz H. R. 1999. Spectral analysis with incomplete time

series: an example from seismology. Computers & Geosciences, 25(7), 739–750.

Beer, Michael, Zhang, Yi, Quek, Ser Tong, & Phoon, Kok Kwang. 2013. Reliability

analysis with scarce information: Comparing alternative approaches in a geotechnical

engineering context. Structural Safety, 41(41), 1–10.

Beer, Michael, Gholamy, Afshin, & Kreinovich, Vladik. 2019. A Theoretical Explanation

for the Efficiency of Generalized Harmonic Wavelets in Engineering and Seismic Spectral

Analysis.

Broersen, P.M.T., & Bos, R. 2006. Time-series analysis if data are randomly missing.

IEEE Transactions on Instrumentation and Measurement, 55(1), 79–84.

18



Ching, Jianye, & Phoon, Kok-Kwang. 2019. Modeling Multivariate,Uncertain,Sparse, and

Incomplete Site Investigation Data with Spatial Variation (MUSIC-X). In: Proceedings

of the 7th International Symposium on Geotechnical Safety and Risk (ISGSR 2019).

Comerford, Liam, Kougioumtzoglou, Ioannis A, & Beer, Michael. 2015. An artificial neural

network approach for stochastic process power spectrum estimation subject to missing

data. Structural Safety, 52, 150–160.

Comerford, Liam, Kougioumtzoglou, Ioannis A., & Beer, Michael. 2015. On quantifying

the uncertainty of stochastic process power spectrum estimates subject to missing data.

International Journal of Sustainable Materials and Structural Systems, 2, 185.

Comerford, Liam, Kougioumtzoglou, Ioannis A., & Beer, Michael. 2016. Compressive

sensing based stochastic process power spectrum estimation subject to missing data.

Probabilistic Engineering Mechanics, 44, 66–76.

Der Kiureghian, Armen, & Crempien, Jorge. 1989. An evolutionary model for earthquake

ground motion. Structural safety, 6(2-4), 235–246.

Douglas, John, & Aochi, Hideo. 2008. A Survey of Techniques for Predicting Earthquake

Ground Motions for Engineering Purposes. Surveys in Geophysics, 29(3), 187–220.

Douglas, John, & Aochi, Hideo. 2008. A survey of techniques for predicting earthquake

ground motions for engineering purposes. Surveys in geophysics, 29(3), 187.

Florez, Manuel A., Caporale, Michaelangelo, Buabthong, Pakpoom, Ross, Zachary E.,

Asimaki, Domniki, & Meier, Men-Andrin. 2020. Data-driven Accelerogram Synthesis

using Deep Generative Models. arXiv preprint arXiv:2011.09038.

Goodfellow, Ian, Bengio, Yoshua, & Courville, Aaron. 2016. Deep Learning. MIT Press.

http://www.deeplearningbook.org.

Iyama, Jun, & Kuwamura, Hitoshi. 1999. Application of wavelets to analysis and simu-

lation of earthquake motions. Earthquake Engineering & Structural Dynamics, 28(3),

255–272.

Kondrashov, Dmitri, & Ghil, Michael. 2006. Spatio-temporal filling of missing points in

geophysical data sets. Nonlinear Processes in Geophysics, 13(2), 151–159.

19

http://www.deeplearningbook.org


Kong, Qingkai, Trugman, Daniel T., Ross, Zachary E., Bianco, Michael J., Meade, Bren-

dan J., & Gerstoft, Peter. 2019. Machine Learning in Seismology: Turning Data into

Insights. Seismological Research Letters, 90(1), 3–14.

Kramer, Steven Lawrence. 1996. Geotechnical Earthquake Engineering.

LeCun, Yann, Bengio, Yoshua, & Hinton, Geoffrey. 2015. Deep learning. Nature,

521(7553), 436–444.

Li, Jie, & Chen, Jianbing. 2009. Stochastic Dynamics of Structures.

Li, Zefeng, Meier, Men-Andrin, Hauksson, Egill, Zhan, Zhongwen, & Andrews, Jennifer.

2018. Machine Learning Seismic Wave Discrimination: Application to Earthquake Early

Warning. Geophysical Research Letters, 45(10), 4773–4779.

Liang, Jianwen, Chaudhuri, Samit Ray, & Shinozuka, Masanobu. 2007. Simulation of

Nonstationary Stochastic Processes by Spectral Representation. Journal of Engineering

Mechanics-asce, 133(6), 616–627.

Lin, Y. K., & Yong, Yan. 1987. Evolutionary Kanai-Tajimi Earthquake Models. Journal

of Engineering Mechanics-asce, 113(8), 1119–1137.

Liu, S. C. 1968. Statistical analysis and stochastic simulation of ground-motion data. The

Bell System Technical Journal, 47(10), 2273–2298.

Liu, SC. 1968. Statistical Analysis and Stochastic Simulation of Ground-Motion Data.

Bell System Technical Journal, 47(10), 2273–2298.

Liu, Shin-Chi. 1970. Evolutionary power spectral density of strong-motion earthquakes.

Bulletin of the Seismological Society of America, 60(3), 891–900.

Lomb, N. R. 1976. Least-Squares Frequency Analysis of Unequally Spaced Data. Astro-

physics and Space Science, 39(2), 447–462.
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